同调代数

✍ dations ◷ 2025-09-09 21:33:20 #同调代数,抽象代数,代数拓扑

同调代数是数学的一个分支,它研究同调与上同调技术的一般框架。

同调代数是一门相对年轻的学科,其源头可追溯到代数拓扑(单纯形同调)与抽象代数(合冲模)在十九世纪末的发展,这两门理论各自由庞加莱与希尔伯特开创。

同调代数的发展与范畴论的出现密不可分。大致说来,同调代数是(上)同调函子及其代数结构的研究。“同调”与“上同调”是一对对偶的概念,它们满足的范畴论性质相反(即:箭头反向)。数学很大一部分的内在构造可藉链复形理解,其性质则以同调与上同调的面貌展现,同调代数能萃取这些链复形蕴含的资讯,并表之为拓扑空间、层、群、环、李代数与C*-代数等等“具体”对象的(上)同调不变量。谱序列是计算这些量的有力工具。

同调代数肇始即在代数拓扑中扮演要角。其影响日渐扩大,目前已遍及交换代数、代数几何、代数数论、表示理论、算子代数、偏微分方程与非交换几何。K-理论是一门独立的学科,它也采用同调代数的办法。

同调代数领域的基本对象是一个链复形 ( A , d ) {\displaystyle (A_{\bullet },d_{\bullet })} 0, 1, 2……。它们通过一系列同态 : -1相连,使得每两个连接的映射的合成为零:对所有有 o +1 = 0(有时迳写作 d 2 = 0 {\displaystyle d^{2}=0} 。一个上链复形 ( A , d ) {\displaystyle (A^{\bullet },d^{\bullet })} 0, 1, 2……。它们由一系列同态 : →+1相连,使得任何两个接连的映射的合成为零:对所有有+1 o = 0:

关于链复形的种种定义可以照搬至上链复形;实质上,我们仅须将原定义中的所有箭头反转。例如上链复形的上同调群定义为:

形式地说,同调代数可定义为链复形与上链复形的抽象研究。以下我们将看到它的具体根源。

同调代数的根源之一在代数拓扑,而后者的历史则可上溯至十九世纪中。早在黎曼关于阿贝尔簇的工作中,就已考虑过黎曼曲面上的闭曲线是否为一块区域的边界的问题;根据斯托克斯定理,闭形式在这类闭曲线上的积分恒为零,而这类曲线的多寡显然牵涉到曲面的拓扑性状。黎曼依此定义了“连通数”——用现代的语言表述即是 1 + dim H 1 ( X ; Z / 2 Z ) {\displaystyle 1+\dim H_{1}(X;\mathbb {Z} /2\mathbb {Z} )} 及其后续工作真正奠定了代数拓扑学的基础。他考虑的对象是后来所谓的单纯复形,这类空间在同胚的意义下可剖分为多面体,它包含了微分拓扑中处理的大多数有限维空间。庞加莱考虑一个单纯复形 X {\displaystyle X} M 1 {\displaystyle M_{1}} 标示了同调代数的成熟。书中的概念与工具影响之深广,成为各领域数学家们不可须臾离的生活资料。以下举出数点例子:

一直到1970年代,嘉当与艾伦伯格的著作都是同调代数的圣经,同时期受欢迎的教本还有麦克兰恩的,格罗滕迪克的《代数几何基础》与东北论文。

嘉当在1980年接受牛津大学荣誉博士时,曾用拉丁文写下这么一段话:

亚历山大·格罗滕迪克在1955年左右对韦伊猜想发生兴趣,而真正勾动他的是此猜想的上同调表述;格罗滕迪克为此开始研习同调代数,当时嘉当-艾伦伯格的书尚未出版。嘉当与艾伦伯格仅考虑模构成的范畴。格罗滕迪克在1956年一封给塞尔的信中写道:

这封信铺陈了后来所谓的梗概。空间的上同调系指层上同调,当时是以Čech上同调或细层分解定义的;而所谓细层是一类带有单位分解的层,因此只在仿紧空间(当时称作可分空间)上有细层分解;这对微分几何与复几何不成问题,但对一般的代数簇则是致命缺陷。塞尔回复道:

格罗滕迪克遂着手重写同调代数的基础。

这条思路在他于1957年发表于《东北数学杂志》的论文中开花结果。原本区区数页的简单定义变为102页的范畴论论证,谣传他因此花了两年才找到地方刊登;但后续发展证明他的努力与收获是相称的。论文提出的重要观念如下:

格罗滕迪克借此将层上同调化为导函子的特例,阿贝尔范畴也成为同调代数的标准语言。

格罗滕迪克在1961年左右面临一个技术瓶颈:为了为任意概形上的凝聚层建立对偶定理,必须为同调代数发展新工具。这个任务由他的学生让-路易·韦迪耶(Jean-Louis Verdier)完成了。

Verdier在1967年的博士论文中引入了三角范畴与导范畴的观念。约略地说,三角范畴是一种能制造长正合序列与上同调函子的范畴;一个阿贝尔范畴 A {\displaystyle {\mathcal {A}}} 末章:。

庞加莱研究拓扑的方法是将空间剖分为多面体,这时空间的拓扑性质完全决定于这些点、线、面……等等[“单纯形”及其间的相交关系。将这套方法抽象化,便可对任何范畴 A {\displaystyle {\mathcal {A}}} 定义单纯形对象(及其对偶上单纯形对象)。在 A {\displaystyle {\mathcal {A}}} 为集合范畴的情形特别有用,此时的单纯形对象称为单纯形集合(及其对偶上单纯形集合)。对单纯形集合可定义其几何实现,这是一个CW-复形。对于来自一个源自拓扑空间的单纯形集合,几何实现不外是将空间“拼回去”;而对源于代数构造的单纯形集,几何实现则能用以构造分类空间。在单纯形集合上可以抽象地开展同伦论的研究。

另一方面,若取 A {\displaystyle {\mathcal {A}}} 为一阿贝尔范畴,对任一单纯形对象 A {\displaystyle A} 皆可定义一个链复形 N ( A ) {\displaystyle N(A)} 。此时单纯形对象与链复形的关系由以下定理阐明:

Dold-Kan对应定理(1957年)。函子 N {\displaystyle N} 给出范畴间的等价

透过这个对应,单纯形集合理论可助同调代数一臂之力,例如我们可借此定义更广义的导函子,或得到某类对象的典范分解。

源于同调论的古典同调代数只给出“可交换”的资讯。对于空间 X {\displaystyle X} 上的非交换群层 G {\displaystyle G} ,古典方法只能定义第一个上同调 H 1 ( X ; G ) {\displaystyle H^{1}(X;G)} ;这个集合分类了 X {\displaystyle X} 上的扭子。数学家们尝试定义高阶的非交换上同调,这方面的理论常牵涉到同伦理论、单纯形集合,或者高阶的范畴论(如叠论)。

就模型范畴的观点,同调代数可被视为同伦理论的一支。这是Daniel Quillen将模型范畴理论称作同伦代数的原因。

相关

  • 纳克纳克可能指:
  • 石蟹详见内文石蟹科(Lithodidae),其物种俗称石蟹、白石蟹或岩蟹,是十足目石蟹总科的一个甲壳类的科,分布在寒冷的海域。由于它们的体型巨大及肉质美味,很多物种都被广泛捕捉来作为食物
  • 德婺高速公路德婺高速是江西省的一条高速公路,原省级高速编号S26,根据最新的编号规则,现分别属于杭长高速公路和德上高速公路的一部分,全长35公里,于2006年11月19日通车。
  • 啼死鸟《啼死鸟》()是英国犯罪作家莫·海德(Mo Hayder) 的第一本小说。1999年发行,剧情是介绍了主角 DI Jack Caffery。续集是《治疗》()。
  • 杰森·马奎斯杰森·斯科特·马奎斯(Jason Scott Marquis,1978年8月21日-)出生于美国纽约州曼哈塞特,是美国职棒投手,目前是自由球员。他曾效力于亚特兰大勇士、圣路易红雀、芝加哥小熊、科罗拉
  • 核心期刊核心期刊是指刊载论文数量多、品质高,而且能反应出该学科最新研究成果及发展趋势,受到读者重视之学术期刊。此概念由英国布莱德福(Samuel Clement Bradford)提出,所谓的布莱德福
  • 沙蟹属沙蟹属(学名:)是一种常见的海滩螃蟹,分布在很多国家。其特征为有一只螯比另一只大,但是没有招潮蟹属螃蟹差异那么明显。沙蟹生活在热带和亚热带地区沙滩。它们使用鳃呼吸,通过海水
  • 贡禹贡禹(前124年-前44年),西汉中期大臣。字少翁,琅琊郡(今山东诸城)人。他在汉宣帝时,任谏大夫。他多次上书汉元帝,针对朝廷腐败、贵族奢侈、郡县人民贫困,建议皇帝选贤任能、诛杀奸臣,重
  • 巴伐利亚的阿达尔贝特 (1828-1875)巴伐利亚的阿达尔贝特(德语:Adalbert von Bayern,1828年7月19日-1875年9月21日),巴伐利亚国王路德维希一世的幼子。1856年,阿达尔贝特与西班牙配国王法兰西斯科的妹妹艾玛莉亚(英语:I
  • 恐怖旅舍《恐怖旅舍》(英语:)是一部2005年上映的美国黑色幽默邪典犯罪恐怖片,为艾利·罗斯执导。由杰·赫南德兹和德瑞克·李察森领衔主演。电影于2005年9月17日在多伦多国际电影节上映