分岔理论

✍ dations ◷ 2025-08-18 07:30:41 #动力系统,非线性系统,分岔理论

分岔理论或分歧理论(bifurcation theory)是数学中研究一群曲线在本质或是拓扑结构上的改变。一群曲线可能是向量场内的积分曲线(英语:Integral curve),也可能是一群类似微分方程的解。

分岔(bifurcation)常出现在动态系统的数学研究中,是指系统参数(分岔参数)小而连续的变化,结果造成系统本质或是拓扑结构的突然改变。分岔会出现在连续系统(以常微分方程、时滞微分方程或偏微分方程来描述)或是离散系统中 (以映射来描述)。

bifurcation一词最早是由儒勒·昂利·庞加莱在1885年的论文中提出,这也是第一篇提到类似特性的数学论文,庞加莱后来也为许多不同的驻点命名而且分类。

分岔可以分为以下的二种类型:

局部分岔是指因参数变化,因此改变平衡点(或是不动点)稳定性的情形,对应平衡点特征值的实部由正变负或是由负变正,在离散系统中(会由映射描述),是指不动点其弗洛凯乘子的模为1。这二种情形下,平衡点在分岔时都是非双曲线的。

局部分岔有一个特性,只要控制分岔参数,可以将系统相图中的拓朴变化限制在分岔点附近任意小的区域中,因此称为局部分岔。

考虑用以下常微分方程描述的连续动态系统

若在 ( x 0 , λ 0 ) {\displaystyle (x_{0},\lambda _{0})} 位置的雅可比矩阵 d f x 0 , λ 0 {\displaystyle {\textrm {d}}f_{x_{0},\lambda _{0}}} 有实部为0的特征值,表示在此点有局部分岔。若特征值为0,表示此分岔为稳态的分岔,但若特征值为虚数,表示是霍普夫分岔。

若是离散系统

若在 ( x 0 , λ 0 ) {\displaystyle (x_{0},\lambda _{0})} 的矩阵 d f x 0 , λ 0 {\displaystyle {\textrm {d}}f_{x_{0},\lambda _{0}}} 有模数为1的特征值,表示有局部分岔。若特征值等于1,分岔可能是鞍结分岔(英语:saddle-node bifurcation)、跨临界分岔(英语:transcritical bifurcation)或叉式分岔(英语:pitchfork bifurcation),若特征值等于-1,表示是周期加倍分岔(英语:period-doubling bifurcation),否则则为霍普夫分岔。

局部分岔的例子有:

全域分岔是指较大的不变集(如周期性轨迹)和平衡点重叠。全域分岔也会改变相图上的拓朴,而且其变化不会像局部分岔一様限制在一个小区域,因此称为全域分岔。

全域分岔的例子有:

全域分岔有时会和像奇异吸引子之间更复杂的结构有关,如一种称为危机(英语:Crisis (dynamical systems))的现象就是指当动态系统的参数变化时,奇异吸引子突然出现或是突然消失。

分岔的余维数是指动态系统中需变动几个参数,才会使分岔现象出现。鞍结分岔及霍普夫分岔是常见的局部分岔中,实际余维数为1的二个分岔(其他分岔的余维数都大于1)。不过跨临界分岔及叉式分岔的正规式可以写成只有一个参数的形式,因此也可以视为余维数为1的分岔。

Bogdanov-Takens 分岔(英语:Bogdanov–Takens bifurcation)是一个有较多研究,余维数为2分岔的一个例子。

分岔理论已用在连结量子系统及经典力学系统的动态中,可以用在原子系统、分子系统及谐振隧穿二极管。分岔理论已用到激光动力学的研究中,也用在许多在实验上难以处理的理论例子中,例如kicked top及耦合量子阱。将量子系统及古典力学运动方程中分岔相连结的主要原因是在分岔时,古典力学轨道的signature会变大,正如Martin Gutzwiller(英语:Martin Gutzwiller)在有关量子混沌(英语:quantum chaos)中的研究所提出的一样。许多分岔都研究来连结古典力学和量子力学,像是鞍结分岔、霍普夫分岔、umbilic分岔、周期加倍分岔、重新连接分叉(reconnection bifurcation)、切线分叉(tangent bifurcation)及尖分叉(cusp bifurcation)。


相关

  • 卡雷尔亚历克西·卡雷尔(法语:Alexis Carrel,1873年6月28日-1944年11月5日),法国外科医生、生物学家与优生学家。在1912年因为对于血管以及器官移植的研究,获得诺贝尔生理学或医学奖。此
  • 美国国家科学研究委员会美国国家科学研究委员会(United States National Research Council),1916年由美国国家科学院创建的“民间非营利组织”,是美国国家科学院、美国国家工程院和美国国家医学院(英语:N
  • 僧格林沁僧格林沁亲王(蒙古语:.mw-parser-output .font-mong{font-family:"Menk Hawang Tig","Menk Qagan Tig","Menk Garqag Tig","Menk Har_a Tig","Menk Scnin Tig","Oyun Gurban U
  • 人类历史上规模最大的地面行动轴心国 纳粹德国 意大利王国(至1943年) 匈牙利王国 罗马尼亚王国(至1944年) 保加里亚第三帝国(至1944年)同盟国 苏联 波兰(英语:Polish Armed Forces in the East) 南斯拉夫(自1
  • 连恩大卫·利恩爵士,CBE(英语:Sir David Lean,1908年3月25日-1991年4月16日)是英国电影导演、电影大师,电影以气势磅礡,剧情动人著称。以《桂河大桥》、《阿拉伯的劳伦斯》、《日瓦戈医
  • 剑桥大学沃尔森学院剑桥大学沃尔森学院(英语:Wolfson College, Cambridge) 是剑桥大学的一个成员学院。沃尔森学院为本科生和研究生提供住宿,同时也负责安排本科生录取,并为大学的研究人员提供资金
  • 顶级厨师 (第二季)第二季的《顶级厨师》是中国的一个真人秀电视节目,由2013年1月16日至2013年4月4日在东方卫视播放。
  • 恩里克·卡普利莱斯·拉东斯基恩里克·卡普利莱斯·拉东斯基(Henrique Capriles Radonski,1972年7月11日-),委内瑞拉中间派政治家。2000年至2008年,卡普瑞里斯是​​加拉加斯市巴路达区区长。他于2008年11月出
  • 弗林登山坐标:46°28′36.58″N 7°45′26.84″E / 46.4768278°N 7.7574556°E / 46.4768278; 7.7574556弗林登山(Fründenhorn),是瑞士的山峰,位于该国中西部,由伯恩州负责管辖,属于伯尔
  • 中国地名大会《中国地名大会》是中国中央电视台中文国际频道于2019年11月16日开播的文化节目,是中央电视台原创并制作的地名文化节目,主持人为鲁健,点评嘉宾包括有康震、胡阿祥、葛剑雄三位