分岔理论

✍ dations ◷ 2025-09-15 07:32:16 #动力系统,非线性系统,分岔理论

分岔理论或分歧理论(bifurcation theory)是数学中研究一群曲线在本质或是拓扑结构上的改变。一群曲线可能是向量场内的积分曲线(英语:Integral curve),也可能是一群类似微分方程的解。

分岔(bifurcation)常出现在动态系统的数学研究中,是指系统参数(分岔参数)小而连续的变化,结果造成系统本质或是拓扑结构的突然改变。分岔会出现在连续系统(以常微分方程、时滞微分方程或偏微分方程来描述)或是离散系统中 (以映射来描述)。

bifurcation一词最早是由儒勒·昂利·庞加莱在1885年的论文中提出,这也是第一篇提到类似特性的数学论文,庞加莱后来也为许多不同的驻点命名而且分类。

分岔可以分为以下的二种类型:

局部分岔是指因参数变化,因此改变平衡点(或是不动点)稳定性的情形,对应平衡点特征值的实部由正变负或是由负变正,在离散系统中(会由映射描述),是指不动点其弗洛凯乘子的模为1。这二种情形下,平衡点在分岔时都是非双曲线的。

局部分岔有一个特性,只要控制分岔参数,可以将系统相图中的拓朴变化限制在分岔点附近任意小的区域中,因此称为局部分岔。

考虑用以下常微分方程描述的连续动态系统

若在 ( x 0 , λ 0 ) {\displaystyle (x_{0},\lambda _{0})} 位置的雅可比矩阵 d f x 0 , λ 0 {\displaystyle {\textrm {d}}f_{x_{0},\lambda _{0}}} 有实部为0的特征值,表示在此点有局部分岔。若特征值为0,表示此分岔为稳态的分岔,但若特征值为虚数,表示是霍普夫分岔。

若是离散系统

若在 ( x 0 , λ 0 ) {\displaystyle (x_{0},\lambda _{0})} 的矩阵 d f x 0 , λ 0 {\displaystyle {\textrm {d}}f_{x_{0},\lambda _{0}}} 有模数为1的特征值,表示有局部分岔。若特征值等于1,分岔可能是鞍结分岔(英语:saddle-node bifurcation)、跨临界分岔(英语:transcritical bifurcation)或叉式分岔(英语:pitchfork bifurcation),若特征值等于-1,表示是周期加倍分岔(英语:period-doubling bifurcation),否则则为霍普夫分岔。

局部分岔的例子有:

全域分岔是指较大的不变集(如周期性轨迹)和平衡点重叠。全域分岔也会改变相图上的拓朴,而且其变化不会像局部分岔一様限制在一个小区域,因此称为全域分岔。

全域分岔的例子有:

全域分岔有时会和像奇异吸引子之间更复杂的结构有关,如一种称为危机(英语:Crisis (dynamical systems))的现象就是指当动态系统的参数变化时,奇异吸引子突然出现或是突然消失。

分岔的余维数是指动态系统中需变动几个参数,才会使分岔现象出现。鞍结分岔及霍普夫分岔是常见的局部分岔中,实际余维数为1的二个分岔(其他分岔的余维数都大于1)。不过跨临界分岔及叉式分岔的正规式可以写成只有一个参数的形式,因此也可以视为余维数为1的分岔。

Bogdanov-Takens 分岔(英语:Bogdanov–Takens bifurcation)是一个有较多研究,余维数为2分岔的一个例子。

分岔理论已用在连结量子系统及经典力学系统的动态中,可以用在原子系统、分子系统及谐振隧穿二极管。分岔理论已用到激光动力学的研究中,也用在许多在实验上难以处理的理论例子中,例如kicked top及耦合量子阱。将量子系统及古典力学运动方程中分岔相连结的主要原因是在分岔时,古典力学轨道的signature会变大,正如Martin Gutzwiller(英语:Martin Gutzwiller)在有关量子混沌(英语:quantum chaos)中的研究所提出的一样。许多分岔都研究来连结古典力学和量子力学,像是鞍结分岔、霍普夫分岔、umbilic分岔、周期加倍分岔、重新连接分叉(reconnection bifurcation)、切线分叉(tangent bifurcation)及尖分叉(cusp bifurcation)。


相关

  • 阿尔法·罗密欧name = 'Transport', description = '交通', content = {{ type = 'text', text = [[]] }, { type = 'item', original = 'articulated bus', rule = 'zh-cn:铰接客车;zh-tw
  • Chanel香奈儿(法语:Chanel)公司,是1910年由可可·香奈儿("Coco" Chanel,1883年8月19日-1971年1月10日)所创办的顶级法国女性知名时装店,私人公司,由Pierre Wertheimer的孙子Alain Wertheime
  • 仍孙孙是指子女的子女,男性称孙儿或孙子,女性称孙女。在父系社会,儿子的子女称为“内孙”或者“孙”,女儿的子女称为“外孙”。而自己的孙或外孙就称自己为祖父母或外祖父母。另外,闽
  • 流行性腮腺炎疫苗流行性腮腺炎疫苗(Mumps vaccine)可有效预防流行性腮腺炎,当一群体中大多数人口接受施打时可在减小流行性腮腺炎及其并发症的发生。据估算,当人群中百分之九十均注射该疫苗时,其
  • 千叶真一千叶真一(1939年7月23日-),本名前田祯穗(日语:前田 禎穂、まえだ さだほ),日本福冈县福冈市博多区人,是日本的一名演员、歌手以及电影导演,并且还是一名极真派空手道顶级高手。
  • 伊万·马蒂奇伊万·马蒂奇(德语:Ivan Martić;1990年10月2日-)是一位瑞士足球运动员。在场上的位置是右后卫。他现在效力于意大利足球甲级联赛球队维罗纳足球俱乐部。他是一位波黑裔瑞士人。
  • 克里斯·邓恩克里斯杜化·迈克尔·邓恩(英语:Kristofer "Kris" Michael Dunn,1994年3月18日-),美国职业篮球员,现时效力于NBA球队芝加哥公牛。他在大学篮球时代效力普洛威顿斯学院修士篮球队。2
  • 红烧鳗红烧鳗,台式红烧鳗,在1960年代起,台湾鱼池成功养殖大量鳗鱼外销日本市场,且台湾海洋渔业发达,时常捕获海鳗,红烧鳗因此普及于台湾饮食店、宴席菜、小吃,与鳝、蛙、鳖是旧时台菜宴客
  • 普通高等学校招生全国统一考试(江苏卷)江苏省是全国较早开始高考自主命题的省份。2004年,江苏省开始自命题,在近十多年的时间里,江苏卷已经形成了与全国其它地区迥然不同的独特的命题风格和试题结构。江苏省高考命题
  • 马丁·布莱斯特马丁·布莱斯特(英语:Martin Brest,1951年8月8日-)是一名美国电影导演、编剧和制片人。导演的著名作品有1988年的公路喜剧片《午夜狂奔》和1992年的剧情片《闻香识女人》,后者赢得