麦克风

✍ dations ◷ 2025-09-07 02:55:34 #麦克风,声音,声学,声音技术,声音储存,电子元件

麦克风(音译自英文microphone,简称麦,又称微音器或话筒,正式的中文名是传声器),是一种将声音转换成电子信号的换能器。

动圈式麦克风(Dynamic Microphone)基本的构造包含线圈、振膜、永久磁铁三部分。当声波进入麦克风,振膜受到声波的压力而产生振动,与振膜连接在一起的线圈则开始在磁场中移动,根据法拉第定律以及冷次定律,线圈会产生感应电流。

动圈式麦克风因为含有线圈和磁铁,不像电容式麦克风轻便,灵敏度较低,高低频响应表现较差。优点是声音较为柔润,适合用来收录人声。

电容式麦克风(Condenser Microphone) 并没有线圈及磁铁,靠着电容两片隔板间距离的改变来产生电压变化。当声波进入麦克风,振动膜产生振动,因为基板是固定的,使得振动膜和基板之间的距离会随着振动而改变,根据电容的特性

( A {\displaystyle A} 是隔板面积, d {\displaystyle d} 为隔板距离)。当两块隔板距离发生变化时,电容值 C {\displaystyle C} 会产生改变。再经由

( Q {\displaystyle Q} 为电量,在电容式麦克风中电容极板电压会维持一个定值)可知,当 C {\displaystyle C} 改变时,就会造成电量 Q {\displaystyle Q} 的改变。因为在电容式麦克风中需要维持固定的极板电压 V {\displaystyle V} ,所以此类型麦克风需要额外的电源才能运作,一般常见的电源为电池,或是借由幻象电源(Phantom Power)来供电。电容式麦克风因灵敏度较高,常用于高质量的录音。

驻极体电容麦克风(Electret Condenser Microphone)使用了可保有永久电荷的驻极体物质,因而不需再对电容器供电。但一般驻极体麦克风组件内置有电子电路以放大信号,因此仍需以低电压供电(常规电压是1.0V-10V)。此种麦克风目前广泛使用在消费电子产品之中。

微机电麦克风(MEMS Microphone)指使用微机电(MEMS,MicroElectrical-Mechanical System)技术做成的麦克风,也称麦克风芯片(microphone chip)或硅麦克风(silicon microphone)。 微机电麦克风的压力感应膜是以微机电技术直接蚀刻在硅芯片上,此集成电路芯片通常也集成入一些相关电路,如前置放大器。 大多数微机电麦克风的设计,在基本原理上是属于电容式麦克风的一种变型。 微机电麦克风也常内置模拟数码转换器,直接输出数码信号,成为数码式麦克风,以利与现今的数码电路连接。

微机电麦克风的主要应用于部分的手机、PDA等小型移动产品。 此类小型麦克风以往使用的几乎均是驻极体电容麦克风。

微机电麦克风的主要生产厂商有:Wolfson Microelectronics (WM7xxx), Analog Devices, Akustica (AKU200x), Infineon (SMM310), Knowles Electronics, Memstech (MSMx), NXP Semiconductors, Sonion MEMS, AAC Acoustic Technologies, 与 Omron 等,且还有多家公司积极投入。

铝带式麦克风(Ribbon Microphone) 在磁铁两极间放入通常是铝质的波浪状金属箔带,金属薄膜受声音震动时,因电磁感应而生信号。

铝带式麦克风曾经是早期最好、最昂贵的麦克风。由于形状庞大及铝箔带很薄的脆弱性,现今主要用于专业录音室。

碳精麦克风(Carbon Microphone)作为旧式电话机的碳精话筒而曾大量使用。现今少用。

指麦克风的开路电压与作用在其膜片上的声压之比。实际上,麦克风在声场必然会引起声场散射,所以灵敏度有两种定义。一种是实际作用于膜片上的声压,称为声压灵敏度,另一种是指麦克风未置入声场的声场声压,称为声场灵敏度,其中声场灵敏度又分为自由场灵敏度和扩散场灵敏度。通常录音用麦克风给出声压灵敏度,测量用麦克风因应用类型给出声压或声场灵敏度。

灵敏度的单位是伏/帕(伏特/帕斯卡,V/Pa),通常使用灵敏度级来表示,参考灵敏度为1V/Pa。

指向性描述麦克风对于来自不同角度声音的灵敏度,规格上常用如上的polar pattern来表示,在每个示意图中,虚线圆形的上方代表麦克风前方,下方则代表麦克风的后方。

全向式(Omnidirectional)对于来自不同角度的声音,其灵敏度是相同的。常见于需要收录整个环境声音的录音工程;或是声源在移动时,希望能保持良好收音的情况;演讲者在演说时配带的领夹式麦克风也属此类。全向式的缺点在于容易收到四周环境的噪音,而在价格方面相对较为便宜。

常见的单一指向式为心型指向(Cardioid)或超心型指向(Hypercardioid),对于来自麦克风前方的声音有最佳的收音效果,

双指向式(Bi-directional或Figure-of-8)可接受来自麦克风前方和后方的声音。直接使用的应用场合不多,大多是运用作为立体声录音法等特殊用途(如MS、Blumlein录音法)。其内部结构和全指向性基本相似,主要区别是在线路板上面(PCB)

频率响应(Frequency Response )是指麦克风接受到不同频率声音时,输出信号会随着频率的变化而发生放大或衰减。最理想的频率响应曲线为一条水平线,代表输出信号能真实呈现原始声音的特性,但这种理想情况不容易实现。一般来说,电容式麦克风的频率响应曲线会比动圈式的来得平坦。常见的麦克风频率响应曲线大多为高低频衰减,而中高频略为放大;低频衰减可以减少录音环境周遭低频噪音的干扰。

频率响应曲线图中,横轴为频率,单位为赫兹,大部分情况取对数来表示;纵轴则为灵敏度,单位为分贝。

在麦克风规格中,都会列出阻抗值(单位为欧姆),在麦克风领域一般而言,低于600欧姆为低阻抗;介于600至10,000欧姆为中阻抗;高于10,000欧姆为高阻抗。例如像Shure SM58这支麦克风的阻抗值为300欧姆。一般麦克风的设计与实际使用上,所接的负载(放大器)输入阻抗通常大于麦克风输出阻抗而不作阻抗匹配,如果强要匹配会影响麦克风的频率响应、造成有损,尤其是在较大音压时。但某些动圈麦克风或铝带麦克风的设计上,有考虑或需要负载阻抗所提供的阻尼作用,此时则须搭配特定负载阻抗才有最佳效果。


3-pin XLR接头使用平衡式输出信号,可有效消除外来的噪声干扰。三支针脚会标明1、2、3三个数字;在美规中,1代表接地线,2代表正相(hot)信号,3代表反相(cold)信号;欧规中,1代表接地线,2代表反相(cold)信号,3代表正相(hot)信号。

1/4吋(6.3mm)接头有分单声道(mono)和立体声(stereo)两种,简单的区分方式是看接头上有几个黑色的绝缘环,两个绝缘环代表立体声,一个绝缘环则代窗体声道。在图2中,各个数字代表的部位功用如下:

声海麦克风

Neumann U87 电容式麦克风

相关

  • 法院法院是在现代国家中职掌审判、解决争议、解释法律、执行司法权的机关。负责审理人与人、人民与政府或政府各部门之间的争议,并作出判决。随各国采取法律制度的不同,法院也有不
  • 钠23钠-23(23Na)是钠元素其中的一种最稳定、含量最丰富的同位素。已发现钠的同位素有15种,包括钠19至钠33,其中只有钠23是稳定的,其他同位素都带有放射性。原子量是22.98977 u。 过
  • 保育保育运动也被称为自然保护运动,是一个政治,环境和社会运动。保育运动旨在保护自然资源,包括动物、真菌和植物物种以及它们的栖息地。早期保育运动,包括渔业和野生动物管理,水,土壤
  • 正向力支持力(英语:Normal force,日语:垂直抗力,常标记为 F n   {\display
  • 乳腺管原位癌 (DCIS)乳腺导管原位癌(Ductal carcinoma in situ,简称DCIS) ,也称为乳腺管原位癌或乳管内原位癌,是发生在乳房的癌前(pre-cancerous)病变或非侵袭性癌症。DCIS在乳癌阶段(英语:Breast cance
  • 坎布里亚坎布里亚(郡)(英语:Cumbria,IPA:/'.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida Sans Unicode","Code2000","Gentium","
  • 旧金山半岛坐标:37°35′00″N 122°24′04″W / 37.58333°N 122.40111°W / 37.58333; -122.40111旧金山半岛(San Francisco Peninsula),是美国旧金山湾区的一个半岛,分隔旧金山湾与太平
  • 墨西哥战争美国胜利美墨战争是美国与墨西哥之间于从1846年至1848年爆发的一场战争。19世纪,美国国内流行“天定命运论”,昭昭天命成为美国19世纪时的政治标语 ,其中一层含义就是美国人是
  • 即期券即期券是美国纸币的一种,发行于1861年8月至1862年4月美国南北战争期间,面额有5美元、10美元、20美元。即期券是美国发行的第一种纸币,在某种意义上,广泛流传到今天的一系列的货
  • 亚历克·杰弗里斯亚历克·约翰·杰弗里斯爵士,CH,FRS(英语:Sir Alec John Jeffreys,1950年1月9日-),出生于英国牛津,英国遗传学家,最早的DNA指纹分析及DNA特征测定技术发展者。其技术首次在1983到1986