首页 >
不可微
✍ dations ◷ 2025-12-06 04:08:52 #不可微
在微积分学中,可微函数是指那些在定义域中所有点都存在导数的函数。可微函数的图像在定义域内的每一点上必存在非垂直切线。因此,可微函数的图像是相对光滑的,没有间断点、尖点或任何有垂直切线的点。一般来说,若X0是函数f定义域上的一点,且f′(X0)有定义,则称f在X0点可微。这就是说f的图像在(X0, f(X0))点有非垂直切线,且该点不是间断点、尖点。若f在X0点可微,则f在该点必连续。特别的,所有可微函数在其定义域内任一点必连续。逆命题则不成立:一个连续函数未必可微。比如,一个有折点、尖点或垂直切线的函数可能是连续的,但在异常点不可微。实践中运用的函数大多在所有点可微,或几乎处处可微。但斯特凡·巴拿赫声称可微函数在所有函数构成的集合中却是少数。这表示可微函数在连续函数中不具代表性。人们发现的第一个处处连续但处处不可微的函数是魏尔斯特拉斯函数。函数f是连续可微(continuously differentiable),如果导数f'(x)存在且是连续函数。可微函数f(x)之导数f'(x)不可能有跳跃不连续点,但可能有本性不连续点。例如考虑以下函数f(x):此函数在x=0处可微,可照定义求出f'(0):但对x≠0,当x趋近于0时,f'(x)的极限并不存在。连续可微函数被称作
C
1
{displaystyle C^{1}}
函数。一个函数称作'
C
2
{displaystyle C^{2}}
函数如果函数的一阶、二阶导数存在且连续。更一般的,一个函数称作
C
k
{displaystyle C^{k}}
函数如果前k阶导数f′(x), f″(x), ..., f(k)(x) 都存在且连续。如果对于所有正整数n,f(n)存在,这个函数被称为光滑函数或称
C
∞
{displaystyle C^{infty }}
函数。如果一个函数的所有偏导数在某点的邻域内存在且连续,那么该函数在该点可微,而且是class C1。(这是可微的一个充分不必要条件)形式上,一个多元实值函数 .mw-parser-output .serif{font-family:Times,serif}f: Rm → Rn在点x0处可微,如果存在线性映射J: Rm → Rn满足注意,偏导数(甚至所有方向导数)都存在并不能保证函数在该点可微,考虑以下函数f: R2 → R:此函数在(0, 0)并不可微,但其所有偏导数及方向导数在该点皆存在。以下是一个连续的例子:此函数在(0, 0)并不可微,但其所有偏导数及方向导数在该点皆存在。在复分析中,任何在某点附近可微的复变函数被称为全纯函数,这类函数也将会是无限可微,甚至是解析函数。
相关
- 穿透式电子显微镜透射电子显微镜(英语:Transmission electron microscope,缩写:TEM、CTEM),简称透射电镜,是把经加速和聚集的电子束投射到非常薄的样品上,电子与样品中的原子碰撞而改变方向,从而产生
- 冬虫夏草Sphaeria sinensis Berkeley (1843) Cordyceps sinensis (Berk.) Sacc. (1878)冬虫夏草(学名:Ophiocordyceps sinensis,藏语:.mw-parser-output .uchen{font-family:"Qomolangma
- 花斑癣花斑癣(tinea versicolor;俗称汗斑),是常见的皮肤感染,主要由球型马拉色菌(Malassezia globosa)及秕糠马拉癣菌(Malassezia furfur)这两种真菌所引致。医学导航 · 真菌病真菌 ·
- 欧翁意昂集团(E.ON)是一家总部位于杜塞尔多夫的股份制公司,它是一家处于世界领先地位的欧洲能源康采恩,业务以欧洲范围内的天然气、电力为主。该企业所经营的包括:直接将电力、天然气
- 接合生殖水绵是水绵属(学名:Spirogyra)绿藻门物种的总称,又名石衣、水衣、水苔、石发、陟厘、侧梨、水青苔,是一种普遍生活在淡水里的真核多细胞藻类,因体内含有1-16条带状、螺旋形的叶绿体
- CSi有机硅化学(organosilicon compounds)主要研究有机硅化合物的性质及反应活性。有机硅化合物就是含有碳硅键的有机化合物。和碳类似,有机硅也是四配位的四面体结构。在生物分子
- 解旋酶螺旋酶(英语:Helicases,又译解旋酶或解螺旋酶)是所有生物体维持生命所必需的一类酶,可分为多种类型。这类酵素是能够依循核酸磷酸双酯骨架(phosphodiester backbone)的方向性,而往特
- 皮特凯恩群岛面积国家领袖皮特凯恩群岛(英语:Pitcairn Islands、诺福克语:Pitkern Ailen),正式名称为皮特凯恩、亨德森、迪西和奥埃诺群岛,是由4座岛屿组成的南太平洋群岛,其中只有第二大岛屿皮
- 老聃老子(?-?),姓李,一说姓老,名耳,字伯阳、外字聃,世人尊称为“老子”,生于东周的楚国苦县厉乡曲仁里(原属陈国,今河南省鹿邑县),师从殷商末臣商容,于东周春秋时周朝守藏室任柱下史。中国春秋时
- 失忆失忆症(Amnesia,来自希腊语ἀμνησία),又称失忆症候群(amnesic syndrome),是一种记忆混乱的疾病。简单来说就是丧失记忆,包含丧失部分记忆或丧失全部记忆。失忆症的成因包括器
