功函数

✍ dations ◷ 2024-12-22 18:49:05 #功函数
功函数(又称功函、逸出功,英语:Work function)是指要使一粒电子立即从固体表面中逸出,所必须提供的最小能量(通常以电子伏特为单位)。这里“立即”一词表示最终电子位置从原子尺度上远离表面但从宏观尺度上依然靠近固体。功函数不是材料体相的本征性质,更准确的说法应为材料表面的性质(比如表面暴露晶面情况和受污染程度)功函数是金属的重要属性。功函数的大小通常大概是金属自由原子电离能的二分之一。金属的功函数W与它的费米能级 ϵ F {displaystyle epsilon _{F};} 密切相关但两者并不相等。这是因为真实世界中的固体具有表面效应:真实世界的固体并不是电子和离子的无限延伸重复排满整个布拉维格子的每一个原胞。没有任何一者能仅仅位于一系列布拉维格点 { R } {displaystyle {R};} 在固体占据且充满了非扭曲电荷分布基 { R } {displaystyle {R};} 至所有原胞的几何区域V。的确,那些原胞中靠近表面的电荷分布将会与理想无限固体相比被显著的扭曲,导致一个有效表面偶极子分布,或者,有些时候同时有表面偶极子分布和表面电荷分布。能够证明如果我们定义功函数为把电子从固体中立即移出到一点所需的最小能量,但是表面电荷分布的效应能够忽略,仅仅留下表面偶极子分布。如果定义带来表面两端势能差的有效表面偶极子为 W S {displaystyle W_{S};} 。且定义从不考虑表面扭曲效应的有限固体计算出的 ϵ F {displaystyle epsilon _{F};} 为费米能,当按惯例位于 r → ∞ {displaystyle rrightarrow infty ;} 的势为零。那么,正确的功函数公式为:W = − ϵ F + W S {displaystyle W=-epsilon _{F}+W_{S};}其中 ϵ F {displaystyle epsilon _{F};} 是负的,表明电子在固体中为负极。W = − E t o t ( N + 1 ) + { E t o t ( N ) + V ( ∞ ) } = − ∂ E t o t ∂ N + V ( ∞ ) = − μ + V ( ∞ ) {displaystyle W=-E_{tot}(N+1)+{E_{tot}(N)+V(infty )}=-{partial E_{tot} over {partial N}}+V(infty )=-mu +V(infty )}单位:电子伏特,eV功函数是从某种金属释放电子所必须给予的最小能量。在光电效应中如果一个拥有能量比功函数大的光子被照射到金属上,则光电发射将会发生。任何超出的能量将以动能形式给予电子。光电功函数为其中h是普朗克常数而f0是能产生光电发射光子的最小(阈值)频率。当电子获得能量时,它从一个能级以“量子跃迁”的方式跳到另一个能级。这一过程称为电子的激发或者跃迁,其中较高能级称为“激发态”而最低能级称作“基态”。功函数在热发射理论中也同等重要。这里电子从热而非光子中获得能量。在这种情况下,即电子从加热的充满负电的真空管灯丝逃逸的情况下,功函数可被称作热功函。钨是真空管中常见的金属元素,它的功函数大约是4.5eV。热发射要求有灯丝加热电流(if),来保持2000-2700K的温度。一旦达到灯丝电流的饱和态,则灯丝电流的大小改变不再影响电子束电流。 电子枪被提供一个非常靠近克服功函数(W)所需势的灯丝电流(Goldstein, 2003)。热功函取决于晶体取向而且趋向于对开放晶格的金属更小,对于原子紧密堆积的金属更大。范围大概是1.5–6 eV。某种程度上稠密晶面比开放晶格金属更高。在电子学里功函数对设计肖特基二极管或发光二极管中金属-半导体结以及真空管非常重要.很多基于不同物理效应的技术被发展出来来测量样品的电学功函数。可以区分出两类功函数测量的试验方法:绝对测量和相对测量。第一类方法利用样品由光吸收(光发射)所引发的电子发射,通过高温(热发射)、或者电场(场发射),以及使用电子隧穿效应。所有相对测量方法利用了样品与参照电极的接触势差。实验上,是使用二极管的阴极电流或者样品与参照物的间由人工改变的两者间电容导致的位移电流等方法(开尔文探测、开尔文探测力显微镜)来测量的。光电发射光谱学(PES)是基于外光电效应的光谱学技术术语。对于紫外光电子光谱学(UPS),固体样品的表面被用紫外(UV)光激发然后发射电子的动能得到分析。因为紫外光是能量 h ν {displaystyle hnu } 低于100eV的电磁辐射,它能够只抓出价电子。因为固体中电子逃逸深度的限制紫外光电子光谱对表面非常敏感,为信息深度的范围为2 – 3个单层。同时测量原理限制了光电发射光谱学被用于UHV情形。得到的光谱通过提供态密度、占据态及功函数等信息反应了样品电子结构。推迟二极管方法是最简单和最古老的的测量功函数的方法之一。它是源自发射器电子的热发射。收集到样品的电子电流密度 J {displaystyle J} 取决于样品的功函数 ϕ {displaystyle phi } 且可通过 Richardson–Dushman方程 J = A T 2 e − ϕ / k T {displaystyle J=AT^{2}e^{-phi /kT}} 计算,其中 A {displaystyle A} ,Richardson常数,是具体的材料常数。电流密度随温度迅速增长而随功函数指数下降。改变功函数可以简单通过在样品与电子发射器之间施加一个推迟势 V {displaystyle V} 来决定;上述方程中 ϕ {displaystyle phi } 被 e ( Φ + V ) {displaystyle e(Phi +V)} 取代。在恒定电流下测到的推迟势差与功函数的改变相等,假设发射器的功函数与温度不变。也可以使用Richardson–Dushman方程通过样品的温度改变直接决定功函数。重写方程得 l n ( J / T 2 ) = l n ( A ) − ϕ k T {displaystyle ln(J/T^{2})=ln(A)-phi kT} 。描绘 l n ( J / T 2 ) {displaystyle ln(J/T^{2})} 和 1 / T {displaystyle 1/T} 得到的曲线的斜率 − ϕ / k {displaystyle -phi /k} 允许决定样品的功函数。书类:对元素功函值的快速查询:

相关

  • 琉球语琉球语(冲绳语:ルーチューグチ),又称岛言叶(しまくとぅば),属日本琉球语系,分布在冲绳县、鹿儿岛县奄美群岛,是对琉球群岛(包括奄美群岛及冲绳群岛)一系列本土语言的统称。由于各种琉球
  • 北里大学北里大学(日语:北里大学/きたさとだいがく Kitasato daigaku;英语译名:Kitasato University),是本部位在东京都港区的小型私立大学,1962年设校,简称北里、北里大,该大学专攻医学及生
  • 人科猩猩科 Pongidae人科(学名:Hominidae,又称猩猩科Pongidae)是生物分类学中灵长目一科。本科除了智人之外,还包括所有绝种的人类祖先和近亲及所有猩猩。在早期的分类法中,人科仅包括
  • ScS一硫化钪是钪的硫化物之一,化学式为ScS。它是一种拟离子化合物(pseudo-ionic compound),包含以及固体导带上占据的一个电子。一硫化钪具有氯化钠晶体结构。一硫化钪可由金属钪和
  • 彼得·斯唐彼得·约翰·斯唐(英语:Peter John Stang,1947年11月17日-),德裔美国化学家。斯唐主要的研究内容在于特殊几何构型的分子的分子建构和超分子组装化学。他分别在2006年与2010年时获
  • 95号州际公路95号州际公路(Interstate 95,简称I-95)是美国州际公路系统的一部分,共计跨越15州,是美国东岸的交通大动脉,位于东北部的路段更是因为大量的使用量而被称为东北走廊。北起缅因州与
  • 灌木灌木是没有明显主干的木本植物,植株一般比较矮小,不会超过6米。从近地面的地方就开始丛生出横生的枝干。都是多年生。一般为阔叶植物,也有一些针叶植物是灌木,如刺柏。如果越冬
  • 红毛港飞凤寺坐标:22°35′06″N 120°20′32″E / 22.584989°N 120.342180°E / 22.584989; 120.342180红毛港飞凤寺位于台湾高雄市凤山区,原位于小港区红毛港埔头仔,是当地角头庙。该寺
  • 2003年物理国际物理奥林匹克(International Physics Olympiad,简称IPhO)是中学生角逐的物理竞赛,作为国际科学奥林匹克竞赛的一种,国际物理奥林匹克每年举办一次。第一届于1967年在波兰华沙
  • 理论生物学理论生物学是一门以量化工具研究生物学的学门,在生物学领域中,有许多学门皆有一部分是以理论生物学方法来进行研究,例如在神经科学领域中,有一门计算神经科学(computational neur