克劳修斯-莫索提方程式

✍ dations ◷ 2025-10-17 00:52:29 #电学,电介质,物质内的电场和磁场

克劳修斯-莫索提方程式(Clausius-Mossotti equation)表达了线性介电质的极化性和相对电容率之间的关系,是因意大利物理学者莫索提(Ottaviano-Fabrizio Mossotti)和德国物理学者鲁道夫·克劳修斯而命名。这方程式也可以更改为表达极化性和折射率之间的关系,此时称为洛伦兹-洛伦茨方程式(Lorentz-Lorenz equation)。

极化性是一种微观属性,而相对电容率则是在介电质内部的一种巨观属性,所以,这方程式式连结了介电质关于电极化的微观属性与巨观属性。

一个分子的极化性 α {\displaystyle \alpha } 定义为

其中, p {\displaystyle \mathbf {p} } 是分子的感应电偶极矩, E {\displaystyle \mathbf {E} } 是作用于分子的电场。

介电质的电极化强度定义为总电偶极矩每单位面积:

其中, P {\displaystyle \mathbf {P} } 是电极化强度, r {\displaystyle \mathbf {r} } 是检验位置, N j {\displaystyle N_{j}} p j {\displaystyle \mathbf {p} _{j}} 分别是分子 j {\displaystyle j} 的数量每单位面积与电偶极矩。

总合介电质内每一种分子的贡献,就可以计算出介电质的电极化强度。将极化性的定义式代入,可以得到

当计算这方程式时,必需先知道在分子位置的电场,称为“局域电场” E l o c a l {\displaystyle \mathbf {E} _{local}} 。介电质内部的微观电场,从一个位置到另外位置,其变化可能会相当剧烈,在电子或质子附近,电场很大,距离稍微远一点,电场呈平方反比减弱。所以,很难计算这么复杂的电场的物理行为。幸运地是,对于大多数计算,并不需要这么详细的描述。所以,只要选择一个足够大的区域(例如,体积为 V {\displaystyle V'} 、内中含有上千个分子的圆球体 V {\displaystyle \mathbb {V} '} )来计算微观电场 E m i c r o {\displaystyle \mathbf {E} _{micro}} 的平均值,称为“巨观电场” E m a c r o {\displaystyle \mathbf {E} _{macro}} ,就可以足够准确地计算出巨观物理行为:

对于稀薄介电质,分子与分子之间的距离相隔很远,邻近分子的贡献很小,局域电场可以近似为巨观电场  E m a c r o {\displaystyle \mathbf {E} _{macro}}

但对于致密介电质,分子与分子之间的距离相隔很近,邻近分子的贡献很大,必需将邻近分子的贡献 E 1 {\displaystyle \mathbf {E} _{1}} 纳入考量:

因为巨观电场已经包括了电极化所产生的电场(称为“去极化场”) E p {\displaystyle \mathbf {E} _{p}} ,为了不重复计算,在计算 E 1 {\displaystyle \mathbf {E} _{1}} 时,必需将邻近分子的真实贡献 E n e a r {\displaystyle \mathbf {E} _{near}} 减掉去极化场:

举一个简单案例,根据洛伦兹关系(Lorentz Relation),对于立方晶系结构的晶体或各向同性的介电质,由于高度的对称性, E n e a r = 0 {\displaystyle \mathbf {E} _{near}=0}

现在思考以分子位置 r {\displaystyle \mathbf {r} } 为圆心、体积为 V {\displaystyle V'} 的圆球体 V {\displaystyle \mathbb {V} '} ,感受到外电场的作用, V {\displaystyle \mathbb {V} '} 内部的束缚电荷会被电极化,从而产生电极化强度 P {\displaystyle \mathbf {P} } 。假设在 V {\displaystyle \mathbb {V} '} 内部的电极化强度 P {\displaystyle \mathbf {P} } 相当均匀,则电极化强度 P {\displaystyle \mathbf {P} } V {\displaystyle \mathbb {V} '} 的电偶极矩之间的关系为

这线性均匀介电质圆球体内部的电场为

综合前面得到的结果:

对于各向同性、线性、均匀的介电质,电极化率 χ e {\displaystyle \chi _{e}} 定义为

电极化率与极化性的关系为

由于相对电容率 ϵ r {\displaystyle \epsilon _{r}} 与电极化率的关系为

所以,电容率与极化性的关系为

这方程式就是克劳修斯-莫索提方程式。

电介质的折射率 n {\displaystyle n}

其中, μ r {\displaystyle \mu _{r}} 是相对磁导率。

对于大多数介电质, μ r = 1 {\displaystyle \mu _{r}=1} ,所以,折射率近似为 n ϵ r {\displaystyle n\approx {\sqrt {\epsilon _{r}}}} 。将折射率带入克劳修斯-莫索提方程式,就可以给出洛伦兹-洛伦茨方程式:

相关

  • 化能有机营养生物一种生物的基本营养类型可以根据其代谢所采用的碳、还原剂和能量来源划分。多数化能营养生物的能量代谢的基础,是在将电子从还原剂(电子供体,electron donor)到氧化剂(电子受体,el
  • 宣传模式宣传模式(英文:Propaganda model),由Edward S. Herman和诺姆·乔姆斯基提出的理论,以结构性经济原则解释大众传媒报道是无可避免会有偏见的原因。最先出现于两人的1988年著作《Ma
  • 白泉社白泉社(白泉社、はくせんしゃ)是一家日本的出版社。主要发行杂志、漫画、文库、绘本等书籍。1973年12月1日从集英社分支出去成立。跟小学馆、集英社同属于一桥集团(一ツ橋グル
  • 丑闻丑闻,一般又叫负面新闻。是因涉嫌罪恶、不名誉、或不道德等行为而使舆论大哗或激起公愤的事件。丑闻的指控内容可能是真实的,也可能是虚假的,或者真假参半。一些丑闻是由得知内
  • 宗教人类学体质人类学 文化人类学 语言人类学 分子人类学 社会人类学 考古学应用人类学 民族志 参与观察 文化相对论 文化 • 社会 史前史 • 人类演化 亲属 婚姻 • 家庭 物质文化 种
  • 丁科·德尔门吉耶夫丁科·茨韦特科夫·德尔门吉耶夫(保加利亚语:Динко Цветков Дерменджиев,转写:Dinko Tsvetkov Dermendzhiev,1941年6月2日-2019年5月1日),保加利亚足球运动
  • 机动战士敢达 铁血的奥尔芬斯角色列表\ 机动战士敢达 铁血的奥尔芬斯角色列表为日本动画《机动战士敢达 铁血的奥尔芬斯》登场的角色。
  • 蔡少棠IEEE Guillemin-Cauer Award(1972, 1985, 1989) IEEE W.R.G. Baker Prize Paper Award(1973) 蔡少棠(英语:Leon Ong Chua,1936年6月28日-),生于菲律宾,籍贯福建泉州晋江塘东村,美国电机
  • 筋肉少女带筋肉少女带(日语:筋肉少女帯),1982年组团,1980年代后半至1990年代末活跃,2006年全面复出的日本前卫摇滚乐团。简称“筋少”,英文则是使用“King-Show”作表示(初期则用“KIN-SHOW”)
  • 衰减系数衰减系数,(attenuation coefficient) 通常是指某些物理量例如光子、声波、电子、粒子的数量或能量等等,在物体中单一方向行进贯穿的难易程度。以光线为例,衰减系数大,代表光线进