正则变换生成函数

✍ dations ◷ 2025-07-12 16:29:15 #力学,经典力学,哈密顿力学,函数

在哈密顿力学里,当计算正则变换时,生成函数扮演的角色,好似在两组正则坐标 ( q ,   p ) {\displaystyle (\mathbf {q} ,\ \mathbf {p} )} ( Q ,   P ) {\displaystyle (\mathbf {Q} ,\ \mathbf {P} )} 之间的一座桥。为了要保证正则变换的正确性 ,采取一种间接的方法,称为生成函数方法。这两组变数必须符合方程

其中, q = ( q 1 ,   q 2 ,   ,   q N ) {\displaystyle \mathbf {q} =(q_{1},\ q_{2},\ \dots ,\ q_{N})} 是旧广义坐标, p = ( p 1 ,   p 2 ,   ,   p N ) {\displaystyle \mathbf {p} =(p_{1},\ p_{2},\ \dots ,\ p_{N})} 是旧广义动量, Q = ( Q 1 ,   Q 2 ,   ,   Q N ) {\displaystyle \mathbf {Q} =(Q_{1},\ Q_{2},\ \dots ,\ Q_{N})} 是新广义坐标, P = ( P 1 ,   P 2 ,   ,   P N ) {\displaystyle \mathbf {P} =(P_{1},\ P_{2},\ \dots ,\ P_{N})} 是新广义动量, H ( q ,   p ,   t ) ,   K ( Q ,   P ,   t ) {\displaystyle {\mathcal {H}}(\mathbf {q} ,\ \mathbf {p} ,\ t),\ {\mathcal {K}}(\mathbf {Q} ,\ \mathbf {P} ,\ t)} 分别为旧哈密顿量与新哈密顿量, G ( ,   ,   t ) {\displaystyle G(-,\ -,\ t)} 是生成函数, t {\displaystyle t} 是时间。

生成函数 G {\displaystyle G} 的参数,除了时间以外,一半是旧的正则坐标;另一半是新的正则坐标。视选择出来不同的变数而定,一共有四种基本的生成函数。每一种基本生成函数设定一种不同的变换,从旧的一组正则坐标变换为新的一组正则坐标。这变换 ( q ,   p ) ( Q ,   P ) {\displaystyle (\mathbf {q} ,\ \mathbf {p} )\rightarrow (\mathbf {Q} ,\ \mathbf {P} )} 保证是正则变换。

第一型生成函数 G 1 {\displaystyle G_{1}} 只跟旧广义坐标、新广义坐标有关,

代入方程 (1) 。展开生成函数对于时间的全导数,

新广义坐标 Q {\displaystyle \mathbf {Q} } 和旧广义坐标 q {\displaystyle \mathbf {q} } 都是自变量,其对于时间的全导数 Q ˙ {\displaystyle {\dot {\mathbf {Q} }}} q ˙ {\displaystyle {\dot {\mathbf {q} }}} 互相无关,所以,以下 2 N + 1 {\displaystyle 2N+1} 个方程都必须成立:

2 N + 1 {\displaystyle 2N+1} 个方程设定了变换 ( q ,   p ) ( Q ,   P ) {\displaystyle (\mathbf {q} ,\ \mathbf {p} )\rightarrow (\mathbf {Q} ,\ \mathbf {P} )} ,步骤如下:

第一组的 N {\displaystyle N} 个方程 (2) ,设定了 p {\displaystyle \mathbf {p} } N {\displaystyle N} 个函数方程

在理想情况下,这些方程可以逆算出 Q {\displaystyle \mathbf {Q} } N {\displaystyle N} 个函数方程

第二组的 N {\displaystyle N} 个方程 (3) ,设定了 P {\displaystyle \mathbf {P} } N {\displaystyle N} 个函数方程

代入函数方程 (5) ,可以算出 P {\displaystyle \mathbf {P} } N {\displaystyle N} 个函数方程

2 N {\displaystyle 2N} 个函数方程 (5) 、(6) ,可以逆算出 2 N {\displaystyle 2N} 个函数方程

代入新哈密顿量 K {\displaystyle {\mathcal {K}}} 的方程 (4) ,可以得到

第二型生成函数 G 2 {\displaystyle G_{2}} 只跟旧广义坐标 q {\displaystyle \mathbf {q} } 、新广义动量 P {\displaystyle \mathbf {P} } 有关 :

代入方程 (1) 。展开生成函数随时间的全导数:

由于旧广义坐标 q {\displaystyle \mathbf {q} } 与新广义动量 P {\displaystyle \mathbf {P} } 必须彼此无关,以下 2 N + 1 {\displaystyle 2N+1} 方程必须成立:

2 N + 1 {\displaystyle 2N+1} 个方程设定了变换 ( q ,   p ) ( Q ,   P ) {\displaystyle (\mathbf {q} ,\ \mathbf {p} )\rightarrow (\mathbf {Q} ,\ \mathbf {P} )} 。步骤如下:

第一组的 N {\displaystyle N} 个方程 (7) ,设定了 p {\displaystyle \mathbf {p} } 的函数方程

在理想情况下,这些方程可以逆算出 P {\displaystyle \mathbf {P} } 的函数方程

第二组的 N {\displaystyle N} 个方程 (8) ,设定了的函数方程

代入函数方程 (10) ,可以算出 Q {\displaystyle \mathbf {Q} } 函数方程

由函数方程 (10) 、(11) ,可以算出函数方程

代入新哈密顿量的方程 (9) ,则可得到

第三型生成函数只跟旧广义动量 p {\displaystyle \mathbf {p} } 、新广义坐标 Q {\displaystyle \mathbf {Q} } 有关:

以下 2 N + 1 {\displaystyle 2N+1} 方程设定了变换 ( q ,   p ) ( Q ,   P ) {\displaystyle (\mathbf {q} ,\ \mathbf {p} )\rightarrow (\mathbf {Q} ,\ \mathbf {P} )}

第四型生成函数 G 4 ( p , P , t ) {\displaystyle G_{4}(\mathbf {p} ,\mathbf {P} ,t)} 只跟旧广义动量 p {\displaystyle \mathbf {p} } 、新广义动量 P {\displaystyle \mathbf {P} } 有关:

以下 2 N + 1 {\displaystyle 2N+1} 方程设定了变换 ( q ,   p ) ( Q ,   P ) {\displaystyle (\mathbf {q} ,\ \mathbf {p} )\rightarrow (\mathbf {Q} ,\ \mathbf {P} )}

第一型生成函数有一个特别简易案例:

方程 (2) ,(3) ,(4) 的答案分别为

再举一个涉及第二型生成函数,比较复杂的例子。让

这里, g {\displaystyle \mathbf {g} } 是一组 N {\displaystyle N} 个函数。

答案是一个广义坐标的点变换,

有时候,可以将一个给定的哈密顿量,变成一个很像谐振子的哈密顿量,

例如,假若哈密顿量为

这里, p {\displaystyle p} 是广义动量, q {\displaystyle q} 是广义坐标。

一个优良的正则变换选择是

代入方程 (12) ,新哈密顿量的形式与谐振子的哈密顿量型式相同:

这变换用的是第三型生成函数 G 3 ( p ,   Q ) {\displaystyle G_{3}(p,\ Q)} ;其对于 Q {\displaystyle Q} 的导数是

代入方程 (13) 、(14) ,

对于 Q {\displaystyle Q} 积分,可以得到生成函数 G 3 {\displaystyle G_{3}}

最后,检查答案是否正确:

相关

  • 政治心理学异常心理学 行为遗传学 生物心理学 心理药物学 认知心理学 比较心理学 跨文化心理学 文化心理学 差异心理学(英语:Differential psychology) 发展心理学 演化心理学 实验心理学
  • 哈兰哈兰(Halland)是位于瑞典西南部,约塔兰的一个旧省。与西约特兰、斯莫兰、斯科讷陆上接壤。
  • 李商隐李商隐(813年1-约858年),字义山,号玉谿生、樊南生,晚唐诗人,祖籍陇西狄道(今甘肃省临洮县),祖辈迁荥阳(今河南郑州)。诗作文学价值很高,他和杜牧合称“小李杜”,与温庭筠合称为“温李”,与
  • 橹或橹的通假字亦作橹,是一种使船前进的工具,比桨长而大,安在船尾或船旁,用人摇使船前进。橹在古代的发明是模仿鱼的尾巴,安装在船尾,左右摆动可使舟船像鱼儿摆尾那样前进。可是模
  • 梅里韦瑟·刘易斯梅里韦瑟·刘易斯(Meriwether Lewis;1774年8月18日-1809年10月11日)美国探险家、军人和公共管理者,最为人知的是他作为远征军团的领导, 探索刘易斯安那购地后的疆土。刘易斯出生于
  • 畦美女蛤畦美女蛤(学名:),是帘蛤目帘蛤科美女蛤属的一种。主要分布于中国大陆、台湾,常栖息在潮间带至水深20米的砂质海底。
  • 宋岳宋岳(?-?),字伯镇,浙江绍兴府余姚县人,灶籍,明朝政治人物。浙江乡试第六十四名。嘉靖二十年(1541年)辛丑科进士。历官闽县、祁门知县,升刑部主事、员外郎中,出为河间府知府,升河南兵备副使
  • 田名部匡省田名部匡省(1934年12月7日-)是日本的冰球运动员、政治人物。出生于青森县八户市。曾代表日本参加1960年冬季奥林匹克运动会与1964年冬季奥林匹克运动会,引退后任日本国家冰球队(
  • 戈基人戈基人是中国羌族传说中生活于在岷江河谷的一个民族。羌族史诗《羌戈大战》记载,当羌族从中国西北部迁徙到岷江流域时与其发生战争,戈基人被击败,从此消亡灭绝。据说戈基人双眼
  • 毕懋康毕懋康(?-1645年),字孟侯,号东郊,直隶歙县(今安徽)人,同进士出身。万历二十六年(1598年)登戊戌科进士,以中书舍人授御史。万历三十九年(1611年)巡按陕西,是岁旱灾尤甚,“公孟夏入境,即具疏言三