正则变换生成函数

✍ dations ◷ 2025-08-03 11:15:52 #力学,经典力学,哈密顿力学,函数

在哈密顿力学里,当计算正则变换时,生成函数扮演的角色,好似在两组正则坐标 ( q ,   p ) {\displaystyle (\mathbf {q} ,\ \mathbf {p} )} ( Q ,   P ) {\displaystyle (\mathbf {Q} ,\ \mathbf {P} )} 之间的一座桥。为了要保证正则变换的正确性 ,采取一种间接的方法,称为生成函数方法。这两组变数必须符合方程

其中, q = ( q 1 ,   q 2 ,   ,   q N ) {\displaystyle \mathbf {q} =(q_{1},\ q_{2},\ \dots ,\ q_{N})} 是旧广义坐标, p = ( p 1 ,   p 2 ,   ,   p N ) {\displaystyle \mathbf {p} =(p_{1},\ p_{2},\ \dots ,\ p_{N})} 是旧广义动量, Q = ( Q 1 ,   Q 2 ,   ,   Q N ) {\displaystyle \mathbf {Q} =(Q_{1},\ Q_{2},\ \dots ,\ Q_{N})} 是新广义坐标, P = ( P 1 ,   P 2 ,   ,   P N ) {\displaystyle \mathbf {P} =(P_{1},\ P_{2},\ \dots ,\ P_{N})} 是新广义动量, H ( q ,   p ,   t ) ,   K ( Q ,   P ,   t ) {\displaystyle {\mathcal {H}}(\mathbf {q} ,\ \mathbf {p} ,\ t),\ {\mathcal {K}}(\mathbf {Q} ,\ \mathbf {P} ,\ t)} 分别为旧哈密顿量与新哈密顿量, G ( ,   ,   t ) {\displaystyle G(-,\ -,\ t)} 是生成函数, t {\displaystyle t} 是时间。

生成函数 G {\displaystyle G} 的参数,除了时间以外,一半是旧的正则坐标;另一半是新的正则坐标。视选择出来不同的变数而定,一共有四种基本的生成函数。每一种基本生成函数设定一种不同的变换,从旧的一组正则坐标变换为新的一组正则坐标。这变换 ( q ,   p ) ( Q ,   P ) {\displaystyle (\mathbf {q} ,\ \mathbf {p} )\rightarrow (\mathbf {Q} ,\ \mathbf {P} )} 保证是正则变换。

第一型生成函数 G 1 {\displaystyle G_{1}} 只跟旧广义坐标、新广义坐标有关,

代入方程 (1) 。展开生成函数对于时间的全导数,

新广义坐标 Q {\displaystyle \mathbf {Q} } 和旧广义坐标 q {\displaystyle \mathbf {q} } 都是自变量,其对于时间的全导数 Q ˙ {\displaystyle {\dot {\mathbf {Q} }}} q ˙ {\displaystyle {\dot {\mathbf {q} }}} 互相无关,所以,以下 2 N + 1 {\displaystyle 2N+1} 个方程都必须成立:

2 N + 1 {\displaystyle 2N+1} 个方程设定了变换 ( q ,   p ) ( Q ,   P ) {\displaystyle (\mathbf {q} ,\ \mathbf {p} )\rightarrow (\mathbf {Q} ,\ \mathbf {P} )} ,步骤如下:

第一组的 N {\displaystyle N} 个方程 (2) ,设定了 p {\displaystyle \mathbf {p} } N {\displaystyle N} 个函数方程

在理想情况下,这些方程可以逆算出 Q {\displaystyle \mathbf {Q} } N {\displaystyle N} 个函数方程

第二组的 N {\displaystyle N} 个方程 (3) ,设定了 P {\displaystyle \mathbf {P} } N {\displaystyle N} 个函数方程

代入函数方程 (5) ,可以算出 P {\displaystyle \mathbf {P} } N {\displaystyle N} 个函数方程

2 N {\displaystyle 2N} 个函数方程 (5) 、(6) ,可以逆算出 2 N {\displaystyle 2N} 个函数方程

代入新哈密顿量 K {\displaystyle {\mathcal {K}}} 的方程 (4) ,可以得到

第二型生成函数 G 2 {\displaystyle G_{2}} 只跟旧广义坐标 q {\displaystyle \mathbf {q} } 、新广义动量 P {\displaystyle \mathbf {P} } 有关 :

代入方程 (1) 。展开生成函数随时间的全导数:

由于旧广义坐标 q {\displaystyle \mathbf {q} } 与新广义动量 P {\displaystyle \mathbf {P} } 必须彼此无关,以下 2 N + 1 {\displaystyle 2N+1} 方程必须成立:

2 N + 1 {\displaystyle 2N+1} 个方程设定了变换 ( q ,   p ) ( Q ,   P ) {\displaystyle (\mathbf {q} ,\ \mathbf {p} )\rightarrow (\mathbf {Q} ,\ \mathbf {P} )} 。步骤如下:

第一组的 N {\displaystyle N} 个方程 (7) ,设定了 p {\displaystyle \mathbf {p} } 的函数方程

在理想情况下,这些方程可以逆算出 P {\displaystyle \mathbf {P} } 的函数方程

第二组的 N {\displaystyle N} 个方程 (8) ,设定了的函数方程

代入函数方程 (10) ,可以算出 Q {\displaystyle \mathbf {Q} } 函数方程

由函数方程 (10) 、(11) ,可以算出函数方程

代入新哈密顿量的方程 (9) ,则可得到

第三型生成函数只跟旧广义动量 p {\displaystyle \mathbf {p} } 、新广义坐标 Q {\displaystyle \mathbf {Q} } 有关:

以下 2 N + 1 {\displaystyle 2N+1} 方程设定了变换 ( q ,   p ) ( Q ,   P ) {\displaystyle (\mathbf {q} ,\ \mathbf {p} )\rightarrow (\mathbf {Q} ,\ \mathbf {P} )}

第四型生成函数 G 4 ( p , P , t ) {\displaystyle G_{4}(\mathbf {p} ,\mathbf {P} ,t)} 只跟旧广义动量 p {\displaystyle \mathbf {p} } 、新广义动量 P {\displaystyle \mathbf {P} } 有关:

以下 2 N + 1 {\displaystyle 2N+1} 方程设定了变换 ( q ,   p ) ( Q ,   P ) {\displaystyle (\mathbf {q} ,\ \mathbf {p} )\rightarrow (\mathbf {Q} ,\ \mathbf {P} )}

第一型生成函数有一个特别简易案例:

方程 (2) ,(3) ,(4) 的答案分别为

再举一个涉及第二型生成函数,比较复杂的例子。让

这里, g {\displaystyle \mathbf {g} } 是一组 N {\displaystyle N} 个函数。

答案是一个广义坐标的点变换,

有时候,可以将一个给定的哈密顿量,变成一个很像谐振子的哈密顿量,

例如,假若哈密顿量为

这里, p {\displaystyle p} 是广义动量, q {\displaystyle q} 是广义坐标。

一个优良的正则变换选择是

代入方程 (12) ,新哈密顿量的形式与谐振子的哈密顿量型式相同:

这变换用的是第三型生成函数 G 3 ( p ,   Q ) {\displaystyle G_{3}(p,\ Q)} ;其对于 Q {\displaystyle Q} 的导数是

代入方程 (13) 、(14) ,

对于 Q {\displaystyle Q} 积分,可以得到生成函数 G 3 {\displaystyle G_{3}}

最后,检查答案是否正确:

相关

  • 陈定信陈定信(1943年7月6日-),非博士出身的国立台湾大学医学院院长,一路从医师做到医学院院长,为中央研究院院士,并于2005年获选为美国国家科学院外籍院士。陈定信早年跟随宋瑞楼教授研究
  • 赤藓醇赤藓醇(英语:Erythritol,(2R,3S)-丁-1,2,3,4-四醇)或称赤藻糖醇,是一种存在于葡萄、梨子等果实或酱油、味噌、清酒等发酵食品中的天然糖醇(或者多元醇)。具有砂糖60-80%的糖度。
  • 外伤受伤或创伤,是生理创伤、损害,身体受外物力量侵害,身体功能丧失、流血、断裂、骨折等。在工作时的受伤,称为工伤;在运动时受伤,称为运动创伤,学科名为运动创伤学、运动医学,总称创伤
  • 异性恋霸权异性恋霸权是一种以异性恋为中心的观念,这种观念将异性恋视为自然倾向,并将异性结合视为理所当然的义务,因此,所有非异性恋的都被认为是异常的或是负面的。这种观念的常见例子包
  • 次大陆次大陆(英语:subcontinent),指一块大陆中相对独立的较小组成部分。地理意义上的次大陆一般由山脉、沙漠、高原以及海洋等难以通过的交通障碍同大陆的主体部分相隔离。在英语中,“
  • 饭冢幸三饭冢幸三(日语:飯塚幸三/いいづか こうぞう,1931年6月1日-)是一位日本工程师,曾任通商产业省工业技术院(日语:産業技術総合研究所)院长,国际测量联合会(英语:International Measurement C
  • 何友声何友声(1931年7月28日-2018年1月18日),浙江宁波人,中国流体力学与船舶制造技术专家,中国工程院院士。他奠定了中国水翼水动力设计的基础,开拓了中国的螺旋桨激振研究领域,使中国船舶
  • 市川治市川治(1936年6月21日-2009年1月2日)是日本男性声优。埼玉县出身。埼玉县立熊谷高等学校毕业。市川治是在日本动画草创时期就已经相当活跃的资深声优,并带动了第一波声优热潮。
  • 林书宇林书宇(1976年2月8日-),台湾导演。在台北市出生,在美国读小学,中学就读于国立科学工业园区实验高级中学,台北世新大学广播电视电影学系学士(1998年),美国加州艺术学院电影制作研究所硕
  • 包泽包泽(1449年-1505年),字民望,号东川,浙江宁波府鄞县人,明朝政治人物。成化十九年(1483年)癸卯科浙江乡试第八十七名。弘治九年(1496年)登进士。授云南道监察御史。有《东川政绩》十二卷