正则变换生成函数

✍ dations ◷ 2025-05-30 05:25:44 #力学,经典力学,哈密顿力学,函数

在哈密顿力学里,当计算正则变换时,生成函数扮演的角色,好似在两组正则坐标 ( q ,   p ) {\displaystyle (\mathbf {q} ,\ \mathbf {p} )} ( Q ,   P ) {\displaystyle (\mathbf {Q} ,\ \mathbf {P} )} 之间的一座桥。为了要保证正则变换的正确性 ,采取一种间接的方法,称为生成函数方法。这两组变数必须符合方程

其中, q = ( q 1 ,   q 2 ,   ,   q N ) {\displaystyle \mathbf {q} =(q_{1},\ q_{2},\ \dots ,\ q_{N})} 是旧广义坐标, p = ( p 1 ,   p 2 ,   ,   p N ) {\displaystyle \mathbf {p} =(p_{1},\ p_{2},\ \dots ,\ p_{N})} 是旧广义动量, Q = ( Q 1 ,   Q 2 ,   ,   Q N ) {\displaystyle \mathbf {Q} =(Q_{1},\ Q_{2},\ \dots ,\ Q_{N})} 是新广义坐标, P = ( P 1 ,   P 2 ,   ,   P N ) {\displaystyle \mathbf {P} =(P_{1},\ P_{2},\ \dots ,\ P_{N})} 是新广义动量, H ( q ,   p ,   t ) ,   K ( Q ,   P ,   t ) {\displaystyle {\mathcal {H}}(\mathbf {q} ,\ \mathbf {p} ,\ t),\ {\mathcal {K}}(\mathbf {Q} ,\ \mathbf {P} ,\ t)} 分别为旧哈密顿量与新哈密顿量, G ( ,   ,   t ) {\displaystyle G(-,\ -,\ t)} 是生成函数, t {\displaystyle t} 是时间。

生成函数 G {\displaystyle G} 的参数,除了时间以外,一半是旧的正则坐标;另一半是新的正则坐标。视选择出来不同的变数而定,一共有四种基本的生成函数。每一种基本生成函数设定一种不同的变换,从旧的一组正则坐标变换为新的一组正则坐标。这变换 ( q ,   p ) ( Q ,   P ) {\displaystyle (\mathbf {q} ,\ \mathbf {p} )\rightarrow (\mathbf {Q} ,\ \mathbf {P} )} 保证是正则变换。

第一型生成函数 G 1 {\displaystyle G_{1}} 只跟旧广义坐标、新广义坐标有关,

代入方程 (1) 。展开生成函数对于时间的全导数,

新广义坐标 Q {\displaystyle \mathbf {Q} } 和旧广义坐标 q {\displaystyle \mathbf {q} } 都是自变量,其对于时间的全导数 Q ˙ {\displaystyle {\dot {\mathbf {Q} }}} q ˙ {\displaystyle {\dot {\mathbf {q} }}} 互相无关,所以,以下 2 N + 1 {\displaystyle 2N+1} 个方程都必须成立:

2 N + 1 {\displaystyle 2N+1} 个方程设定了变换 ( q ,   p ) ( Q ,   P ) {\displaystyle (\mathbf {q} ,\ \mathbf {p} )\rightarrow (\mathbf {Q} ,\ \mathbf {P} )} ,步骤如下:

第一组的 N {\displaystyle N} 个方程 (2) ,设定了 p {\displaystyle \mathbf {p} } N {\displaystyle N} 个函数方程

在理想情况下,这些方程可以逆算出 Q {\displaystyle \mathbf {Q} } N {\displaystyle N} 个函数方程

第二组的 N {\displaystyle N} 个方程 (3) ,设定了 P {\displaystyle \mathbf {P} } N {\displaystyle N} 个函数方程

代入函数方程 (5) ,可以算出 P {\displaystyle \mathbf {P} } N {\displaystyle N} 个函数方程

2 N {\displaystyle 2N} 个函数方程 (5) 、(6) ,可以逆算出 2 N {\displaystyle 2N} 个函数方程

代入新哈密顿量 K {\displaystyle {\mathcal {K}}} 的方程 (4) ,可以得到

第二型生成函数 G 2 {\displaystyle G_{2}} 只跟旧广义坐标 q {\displaystyle \mathbf {q} } 、新广义动量 P {\displaystyle \mathbf {P} } 有关 :

代入方程 (1) 。展开生成函数随时间的全导数:

由于旧广义坐标 q {\displaystyle \mathbf {q} } 与新广义动量 P {\displaystyle \mathbf {P} } 必须彼此无关,以下 2 N + 1 {\displaystyle 2N+1} 方程必须成立:

2 N + 1 {\displaystyle 2N+1} 个方程设定了变换 ( q ,   p ) ( Q ,   P ) {\displaystyle (\mathbf {q} ,\ \mathbf {p} )\rightarrow (\mathbf {Q} ,\ \mathbf {P} )} 。步骤如下:

第一组的 N {\displaystyle N} 个方程 (7) ,设定了 p {\displaystyle \mathbf {p} } 的函数方程

在理想情况下,这些方程可以逆算出 P {\displaystyle \mathbf {P} } 的函数方程

第二组的 N {\displaystyle N} 个方程 (8) ,设定了的函数方程

代入函数方程 (10) ,可以算出 Q {\displaystyle \mathbf {Q} } 函数方程

由函数方程 (10) 、(11) ,可以算出函数方程

代入新哈密顿量的方程 (9) ,则可得到

第三型生成函数只跟旧广义动量 p {\displaystyle \mathbf {p} } 、新广义坐标 Q {\displaystyle \mathbf {Q} } 有关:

以下 2 N + 1 {\displaystyle 2N+1} 方程设定了变换 ( q ,   p ) ( Q ,   P ) {\displaystyle (\mathbf {q} ,\ \mathbf {p} )\rightarrow (\mathbf {Q} ,\ \mathbf {P} )}

第四型生成函数 G 4 ( p , P , t ) {\displaystyle G_{4}(\mathbf {p} ,\mathbf {P} ,t)} 只跟旧广义动量 p {\displaystyle \mathbf {p} } 、新广义动量 P {\displaystyle \mathbf {P} } 有关:

以下 2 N + 1 {\displaystyle 2N+1} 方程设定了变换 ( q ,   p ) ( Q ,   P ) {\displaystyle (\mathbf {q} ,\ \mathbf {p} )\rightarrow (\mathbf {Q} ,\ \mathbf {P} )}

第一型生成函数有一个特别简易案例:

方程 (2) ,(3) ,(4) 的答案分别为

再举一个涉及第二型生成函数,比较复杂的例子。让

这里, g {\displaystyle \mathbf {g} } 是一组 N {\displaystyle N} 个函数。

答案是一个广义坐标的点变换,

有时候,可以将一个给定的哈密顿量,变成一个很像谐振子的哈密顿量,

例如,假若哈密顿量为

这里, p {\displaystyle p} 是广义动量, q {\displaystyle q} 是广义坐标。

一个优良的正则变换选择是

代入方程 (12) ,新哈密顿量的形式与谐振子的哈密顿量型式相同:

这变换用的是第三型生成函数 G 3 ( p ,   Q ) {\displaystyle G_{3}(p,\ Q)} ;其对于 Q {\displaystyle Q} 的导数是

代入方程 (13) 、(14) ,

对于 Q {\displaystyle Q} 积分,可以得到生成函数 G 3 {\displaystyle G_{3}}

最后,检查答案是否正确:

相关

  • 瘦素1AX8· growth factor activity· ovulation from ovarian follicle · response to hypoxia · positive regulation of cytokine production · placenta development
  • 神经肌肉接点神经肌肉接点又称神经肌肉接触面。神经纤维与肌肉细胞之间的化学联络点。与神经元之间的突触同功。神经纤维分为许多末梢分支,每个分支嵌入肌细胞膜上称为终板的凹陷中。终板
  • mg/dl毫克每公合(表示法:mg/dL)是血液生化检查常用的浓度单位。常规检验如血糖、血胆固醇、血三酸甘油脂等,都会使用这个单位来表示。
  • 爱国法《美国爱国者法》(USA PATRIOT Act)是2001年10月26日由美国总统乔治·沃克·布什签署颁布的国会法,正式的名称为“Uniting and Strengthening America by Providing Appropriat
  • 刘秩 (天顺进士)刘秩(1430年-?),字厚本,江西吉安府安福县人,明朝政治人物,同进士出身。江西乡试第六十二名。天顺元年(1457年),参加丁丑科会试,得贡士第二百六十名。殿试登进士第三甲第二十名。授行人司
  • 现在-皮尔茨名单现在-皮尔茨名单(德语:JETZT – Liste Pilz)是奥地利的一个绿色左翼民粹主义政党。2017年,该党以4%以上的选票赢得了8个席位,击败了未能通过4%的门槛并随后失去所有国民议会席位的绿
  • 徐一槚徐一槚(?-?),字汝材,号步南,浙江衢州府西安县(今属衢州市)人,民籍,明朝政治人物。浙江乡试第九十名。隆庆五年(1572年)登三甲进士。授直隶宁国县知县,改丹徒县知县。擢吏部稽勋司主事,历任考
  • 戴敦元《清代学者象传》第一集之戴敦元像戴敦元(1767年-1834年),字金溪,号吉旋,浙江开化人,清朝政治人物、学者,进士出身。戴敦元自幼天赋秉异,十岁即举神童,学政彭元瑞试之以文,语句老成;面问
  • 川岛庆三川岛庆三(日语:川島 慶三/かわしま けいぞう ,1983年10月5日-)是一名出生于日本长崎县佐世保市的棒球选手,司职内野手,目前效力于日本职棒福冈软银鹰。78 平石洋介 | 80 本多雄一 |
  • 清孝陵孝陵(满语:ᡥᡳᠶᠣᡠᡧᡠᠩᡤᠠ ᠮᡠᠩᡤᠠᠨ,穆麟德:)位于中国河北省遵化市的清东陵,是清世祖顺治帝及其后妃的陵墓。该陵于顺治十八年(1661年)顺治帝崩逝后开始筹画,康熙二年(1663