环形

✍ dations ◷ 2025-11-30 01:27:54 #环形
数学中,环形(annulus)是一个环状的几何图形,或者更一般地,一个环状的对象。几何学中通常所说的环形就是圆环,一个大圆盘挖去一个小同心圆盘剩下的部分。圆环的对称性非常强,是一个以圆心为对称中心的中心对称图形,也是有无数条对称轴的轴对称图形。圆环的几何中心就是圆心。一个以圆心为中心,半径为内外半径的几何平均值的反演保持圆环整体不变,将内外边缘互换,内圆内部与外圆外部互换。一个外半径 R 内半径 r 圆环的面积由外圆和内圆面积之差给出:后一个等式表明圆环面积等于内外半周长之和乘以宽度。有趣的是,圆环的面积也等于 π 乘以完全位于圆环内部的最长线段的长度一半的平方,这可由勾股定理证明。位于圆环内最长的线段必定和内圆相切,该线段的一半和半径 r、R 能组成一个以 R 为斜边的直角三角形。这个公式也可通过积分得到,将圆环分解成无穷个宽 dρ面积 2 π ρ d ρ {displaystyle 2pi rho ,drho } ( = 周长 × 宽) 的小环形,从 ρ = r {displaystyle rho =r} 到 ρ = R {displaystyle rho =R} 积分:在拓扑的意义上来说,平面内一个开环形是由一条简单闭曲线为外边缘和其内部一简单闭曲线为内边缘之间围成的区域。环形是最简单的二连通区域。开环形的基本群为 Z {displaystyle mathbb {Z} } ,基本群的生成元是环内绕内边缘内部任一点一周的路径。一个开环形拓扑等价于圆柱面 S 1 × ( 0 , 1 ) {displaystyle S^{1}times (0,1)} 或穿孔平面。一个环形的万有覆叠空间是带形 R × ( 0 , 1 ) {displaystyle mathbb {R} times (0,1)} ,带形到环形(同构于圆柱面)的覆叠映射为:庞加莱-伯克霍夫不动点定理指出闭圆环的任一个保持边界不动的保面积自同构映射(辛同构)在圆环内部至少有两个不动点,更一般的保面积的扭曲映射(两个边缘转动方向相反,提升到带形上看得更清晰)至少有两个不动点。这个定理来自三体问题,最早由庞加莱1912年提出,他给出了不完整的证明,又称为“庞加莱最后的几何定理”;第二年,伯克赫夫第一次给出了完整的证明。在复分析中,复平面上一个(圆)环域 ann(a; r, R) 是由定义的开区域,这里 a 是任意复数,0 < r < R < ∞ 。注意环域常定义为开集。更一般地,如果允许 r = 0,R < ∞ 这个区域又称以 a 为中心半径为 R 的穿孔圆盘;r > 0 ,R = ∞ 这个区域共形于 ann(a; 0, 1/r );r = 0,R = ∞ 时这个区域即穿孔复平面。作为复平面的子集,一个环域可以看作一个黎曼曲面。环域的复结构由半径的比值 r/R 刻画。任何 0 < r < R < ∞ 的通常圆环 ann(a; r, R) 能解析同胚于中心为原点外半径为 1 的标准环域,同胚映射为:内半径 r / R < 1。穿孔圆盘、穿孔复平面和 0 < r < R < ∞ 的通常圆域是三类复结构不同的黎曼曲面,三者之间均不存在解析同构。任一个不规则的环形区域,或者说二连通域,均解析同胚于标准的环域。阿达马三圆定理是关于一个解析函数在环域内的最大值与边界值关系的论述。

相关

  • 硝酸硝酸(分子式:HNO3)是一种强酸,是三酸两碱其一,其水溶液俗称硝镪水。纯硝酸为无色液体,沸点83℃,味苦,在-42℃时凝结为无色晶体,与水混溶,有强氧化性和腐蚀性。其不同浓度水溶液性质有
  • 能动移动性(英语:motility,又称运动性、活动性)是生物学术语,意指能自发且独立地移动。此一名词可以应用在单细胞和多细胞的生命体上头。在细胞生物学和生医工程中,移动性通常是指细胞
  • 氟胞嘧啶5-氟胞嘧啶(英语:Flucytosine,简写为5-FC或f5C)是一种抗真菌药物,与两性霉素B一起用于严重的念珠菌感染和隐球菌病。它也可以单独使用或与其他抗真菌药一起用于产色霉菌病病。氟
  • 礼制四配颜回 · 孟子 · 曾参 · 孔伋日本藤原惺窝 · 林罗山 · 室鸠巢新井白石 · 雨森芳洲朝鲜薛聪 · 权近 · 吉再 · 安珦 · 李穑李滉 · 王仁 · 李齐贤 
  • 北洋军阀北洋军阀,是中华民国早期最重要的民国军阀势力之一,由袁世凯培植的北洋新军的主要将领组成,袁世凯执掌政权后,袁世凯的“北洋新军”的主要将领雄霸一方,在1916年袁世凯死后,因无人
  • 拉尔夫·达伦多夫拉尔夫·达伦多夫,达伦多夫男爵,KBE(英语:Ralf Gustav Dahrendorf, Baron Dahrendorf,1929年5月1日-2009年6月17日),德国裔英国社会学家、哲学家、政治学家、自由派政治家,冲突理论的
  • 沃森综合征沃森综合征(Watson syndrome)是一种常染色体显性遗传病。以虹膜色素缺陷瘤、腋窝/腹股沟斑点和神经纤维瘤形成为特点。沃森综合征可能和引起Ⅰ型神经纤维瘤病的神经纤维瘤蛋白
  • 柠檬酸循环三羧酸循环(tricarboxylic acid cycle) ,亦作柠檬酸循环(citric acid cycle),是有氧呼吸的第二阶段。该循环以循环中一个重要中间体柠檬酸命名,又因为柠檬酸是一种三元羧酸,该反应又
  • 头颈部癌症头颈癌(Head and Neck Cancers)是指位于头颈部位,除了脑癌以外的其他恶性肿瘤。较常见有口腔癌、鼻咽癌,另外还有口咽癌、下咽癌、喉癌、鼻窦癌、唾液腺癌以及甲状腺癌等。头颈
  • 弘治弘治(1488年至1505年)为中国明朝第九个皇帝明孝宗朱祐樘的年号,前后共十八年。弘治年间,明朝政治清明,经济持续发展,史称弘治中兴。弘治十八年五月明武宗即位沿用。出自《北齐书》