环形

✍ dations ◷ 2025-12-05 12:58:00 #环形
数学中,环形(annulus)是一个环状的几何图形,或者更一般地,一个环状的对象。几何学中通常所说的环形就是圆环,一个大圆盘挖去一个小同心圆盘剩下的部分。圆环的对称性非常强,是一个以圆心为对称中心的中心对称图形,也是有无数条对称轴的轴对称图形。圆环的几何中心就是圆心。一个以圆心为中心,半径为内外半径的几何平均值的反演保持圆环整体不变,将内外边缘互换,内圆内部与外圆外部互换。一个外半径 R 内半径 r 圆环的面积由外圆和内圆面积之差给出:后一个等式表明圆环面积等于内外半周长之和乘以宽度。有趣的是,圆环的面积也等于 π 乘以完全位于圆环内部的最长线段的长度一半的平方,这可由勾股定理证明。位于圆环内最长的线段必定和内圆相切,该线段的一半和半径 r、R 能组成一个以 R 为斜边的直角三角形。这个公式也可通过积分得到,将圆环分解成无穷个宽 dρ面积 2 π ρ d ρ {displaystyle 2pi rho ,drho } ( = 周长 × 宽) 的小环形,从 ρ = r {displaystyle rho =r} 到 ρ = R {displaystyle rho =R} 积分:在拓扑的意义上来说,平面内一个开环形是由一条简单闭曲线为外边缘和其内部一简单闭曲线为内边缘之间围成的区域。环形是最简单的二连通区域。开环形的基本群为 Z {displaystyle mathbb {Z} } ,基本群的生成元是环内绕内边缘内部任一点一周的路径。一个开环形拓扑等价于圆柱面 S 1 × ( 0 , 1 ) {displaystyle S^{1}times (0,1)} 或穿孔平面。一个环形的万有覆叠空间是带形 R × ( 0 , 1 ) {displaystyle mathbb {R} times (0,1)} ,带形到环形(同构于圆柱面)的覆叠映射为:庞加莱-伯克霍夫不动点定理指出闭圆环的任一个保持边界不动的保面积自同构映射(辛同构)在圆环内部至少有两个不动点,更一般的保面积的扭曲映射(两个边缘转动方向相反,提升到带形上看得更清晰)至少有两个不动点。这个定理来自三体问题,最早由庞加莱1912年提出,他给出了不完整的证明,又称为“庞加莱最后的几何定理”;第二年,伯克赫夫第一次给出了完整的证明。在复分析中,复平面上一个(圆)环域 ann(a; r, R) 是由定义的开区域,这里 a 是任意复数,0 < r < R < ∞ 。注意环域常定义为开集。更一般地,如果允许 r = 0,R < ∞ 这个区域又称以 a 为中心半径为 R 的穿孔圆盘;r > 0 ,R = ∞ 这个区域共形于 ann(a; 0, 1/r );r = 0,R = ∞ 时这个区域即穿孔复平面。作为复平面的子集,一个环域可以看作一个黎曼曲面。环域的复结构由半径的比值 r/R 刻画。任何 0 < r < R < ∞ 的通常圆环 ann(a; r, R) 能解析同胚于中心为原点外半径为 1 的标准环域,同胚映射为:内半径 r / R < 1。穿孔圆盘、穿孔复平面和 0 < r < R < ∞ 的通常圆域是三类复结构不同的黎曼曲面,三者之间均不存在解析同构。任一个不规则的环形区域,或者说二连通域,均解析同胚于标准的环域。阿达马三圆定理是关于一个解析函数在环域内的最大值与边界值关系的论述。

相关

  • 阿尔文·普兰丁格阿尔文·卡尔·普兰丁格(英语:Alvin Carl Plantinga,1932年11月15日-),美国当代著名的基督教哲学家,现任圣母大学John A.O'Brien讲席教授。他的研究领域包括基督教神学、认识论和形
  • G6PD缺乏症葡萄糖-6-磷酸脱氢酶缺乏症 ,又名G6PD缺乏症(英文:Glucose-6-Phosphate Dehydrogenase deficiency, G6PDD) ,俗称蚕豆症。是一种先天代谢缺陷(英语:Inborn errors of carbohydrat
  • 海带Saccharina japonica (J.E. Areschoug) C.E. Lane, C. Mayes, Druehl & G.W. Saunders广泛而言,海带可以指所有生物分类上为海带目(Laminariales)的物种。狭义来说,海带可限指是
  • 鸟类学动物学人类学 · 人与动物关系学 蜜蜂学 · 节肢动物学 医学节肢动物学 · 鲸类学 贝类学 · 昆虫学 动物行为学 · 蠕虫学 两栖爬行动物学 · 鱼类学 软体动物学 · 哺乳动
  • 尼科尔夏尔·朱尔·亨利·尼科勒(Charles Jules Henri Nicolle,1866年9月21日-1936年2月28日)是一位法国细菌学家,曾经因为关于辨认出虱子为斑疹伤寒的传染者,而获得1928年诺贝尔生理学
  • 德国鸢尾德国鸢尾(学名:Iris germanica)是鸢尾科鸢尾属的植物。分布于欧洲以及中国大陆的青岛、江苏、湖北等地,目前已由人工引种栽培。植株无性繁殖系群体花花花
  • 阿伯丁坐标:57°09′09″N 2°06′36″W / 57.1526°N 2.1100°W / 57.1526; -2.1100阿伯丁(英语:Aberdeen i/æbərˈdiːn/;低地苏格兰语:Aiberdeen  listen 帮助·信息;苏格兰盖尔语
  • 莫氏不连续面莫霍界面,有时简称莫荷面,是地球的地壳与地幔的分界面。莫霍界面首先在1909年由克罗地亚地震学家莫荷洛维奇(Andrija Mohorovičić)发现。他观察到地震波(特别是P波)在此处波速会
  • 河南巡抚河南巡抚,全称巡抚河南等处地方兼管河道提督军务,为明朝、清朝设置的负责河南地区的巡抚职位。
  • 维多利亚尼罗河白尼罗河(阿拉伯语:النيل الأبيض‎,英语:White Nile)是尼罗河的两条主要支流之一(另外一条是青尼罗河)。狭义上,白尼罗河发源于诺湖杰贝勒河和加扎勒河的汇流处;广义上,白