首页 >
环形
✍ dations ◷ 2025-11-01 18:36:44 #环形
数学中,环形(annulus)是一个环状的几何图形,或者更一般地,一个环状的对象。几何学中通常所说的环形就是圆环,一个大圆盘挖去一个小同心圆盘剩下的部分。圆环的对称性非常强,是一个以圆心为对称中心的中心对称图形,也是有无数条对称轴的轴对称图形。圆环的几何中心就是圆心。一个以圆心为中心,半径为内外半径的几何平均值的反演保持圆环整体不变,将内外边缘互换,内圆内部与外圆外部互换。一个外半径 R 内半径 r 圆环的面积由外圆和内圆面积之差给出:后一个等式表明圆环面积等于内外半周长之和乘以宽度。有趣的是,圆环的面积也等于 π 乘以完全位于圆环内部的最长线段的长度一半的平方,这可由勾股定理证明。位于圆环内最长的线段必定和内圆相切,该线段的一半和半径 r、R 能组成一个以 R 为斜边的直角三角形。这个公式也可通过积分得到,将圆环分解成无穷个宽 dρ面积
2
π
ρ
d
ρ
{displaystyle 2pi rho ,drho }
( = 周长 × 宽) 的小环形,从
ρ
=
r
{displaystyle rho =r}
到
ρ
=
R
{displaystyle rho =R}
积分:在拓扑的意义上来说,平面内一个开环形是由一条简单闭曲线为外边缘和其内部一简单闭曲线为内边缘之间围成的区域。环形是最简单的二连通区域。开环形的基本群为
Z
{displaystyle mathbb {Z} }
,基本群的生成元是环内绕内边缘内部任一点一周的路径。一个开环形拓扑等价于圆柱面
S
1
×
(
0
,
1
)
{displaystyle S^{1}times (0,1)}
或穿孔平面。一个环形的万有覆叠空间是带形
R
×
(
0
,
1
)
{displaystyle mathbb {R} times (0,1)}
,带形到环形(同构于圆柱面)的覆叠映射为:庞加莱-伯克霍夫不动点定理指出闭圆环的任一个保持边界不动的保面积自同构映射(辛同构)在圆环内部至少有两个不动点,更一般的保面积的扭曲映射(两个边缘转动方向相反,提升到带形上看得更清晰)至少有两个不动点。这个定理来自三体问题,最早由庞加莱1912年提出,他给出了不完整的证明,又称为“庞加莱最后的几何定理”;第二年,伯克赫夫第一次给出了完整的证明。在复分析中,复平面上一个(圆)环域 ann(a; r, R) 是由定义的开区域,这里 a 是任意复数,0 < r < R < ∞ 。注意环域常定义为开集。更一般地,如果允许 r = 0,R < ∞ 这个区域又称以 a 为中心半径为 R 的穿孔圆盘;r > 0 ,R = ∞ 这个区域共形于 ann(a; 0, 1/r );r = 0,R = ∞ 时这个区域即穿孔复平面。作为复平面的子集,一个环域可以看作一个黎曼曲面。环域的复结构由半径的比值 r/R 刻画。任何 0 < r < R < ∞ 的通常圆环 ann(a; r, R) 能解析同胚于中心为原点外半径为 1 的标准环域,同胚映射为:内半径 r / R < 1。穿孔圆盘、穿孔复平面和 0 < r < R < ∞ 的通常圆域是三类复结构不同的黎曼曲面,三者之间均不存在解析同构。任一个不规则的环形区域,或者说二连通域,均解析同胚于标准的环域。阿达马三圆定理是关于一个解析函数在环域内的最大值与边界值关系的论述。
相关
- 灭绝营纳粹集中营转移营比利时:布伦东克堡垒 · 梅赫伦转移营法国:居尔集中营 · 德朗西集中营意大利:波尔查诺转移营荷兰:阿默斯福特集中营 · 韦斯特博克转移营挪威:法斯塔德集中营部
- 化粪池化粪池,是为一些没有连接公共排污系统的楼宇而设的小型污水处理系统,包括一个或多个水池及化粪系统。污水在进入水池时,细菌会对污物进行无氧分解,并会使固体废物体积减少,再经过
- 单位笛卡尔坐标系(英语:Cartesian coordinate system,也称直角坐标系)在数学中是一种正交坐标系,由法国数学家勒内·笛卡尔引入而有此名。二维的直角坐标系是由两条相互垂直、相交于
- 网络百科全书网络百科全书,是在互联网上公开给网民查阅的百科全书,网络百科有开放和非开放两种。在线百科全书,也称为数字百科全书,是可通过互联网访问的百科全书。使用互联网创建免费百科全
- 増井祯夫增井祯夫(日语:増井 禎夫/ますい よしお Masui Yoshio,1931年1月1日-),日本裔加拿大细胞生物学家,推动1980年代细胞周期研究大发展的关键人物。盖尔德纳国际奖得主、拉斯克基础医学
- 百优解氟西汀(英语:Fluoxetine),商品名为百忧解(Prozac)是一种选择性5-羟色胺再摄取抑制剂(SSRI)类抗抑郁药。在临床上用于治疗成人重性抑郁障碍、强迫症、神经性暴食症,还用于治疗具有或不
- 东北师范大学东北师范大学(简称:东北师大或东师,英语:Northeast Normal University,英文缩写:NENU)位于中国吉林省长春市,“211工程”大学之一,隶属于中华人民共和国教育部。建校于1946年,原名为东
- 阿玛乌奈特阿玛乌奈特(“Amunet”,/ˈæməˌnɛt/;也拼写为“Amont”或“Amaunet”)是古埃及宗教中的一位原始女神。八元神成员之一,阿蒙神的配偶。其形象为一条蛇,或蛇首女身,头戴下埃及
- 夜叉夜叉(梵语:यक्ष,转写:Yakṣa;巴利语:यक्ख,转写:yakkha),又译为药叉,本义“以鬼为食的神”,佛教中属于鬼道,意译为“能啖鬼”、“捷疾鬼”、“勇健”、“轻捷”等。女性夜叉,称夜叉
- 国际藻类、菌物和植物命名法规《国际藻类、真菌、植物命名法规》(英语:International Code of Nomenclature for algae, fungi, and plants;ICN)是一部关于植物命名的规则与建议,其中确立每一个分类单元(或分类
