自由粒子

✍ dations ◷ 2025-05-19 18:24:07 #基本物理概念,经典力学,量子力学

在物理学里,自由粒子是不被位势束缚的粒子。在经典力学里,一个自由粒子所感受到外来的合力是0。

假若,一个粒子的能量大于在任何地点 x {\displaystyle x\,\!} 的位势, E > V ( x ) {\displaystyle E>V(x)\,\!} ,不会被位势束缚,则称此粒子为自由粒子。更强版的定义,还要求位势为常数 V ( x ) = V 0 {\displaystyle V(x)=V_{0}\,\!} 。假若,一维空间分为几个区域,只有在每个区域内,位势为常数;在区域与区域之间,位势不相等,则称此粒子为半自由粒子。自由粒子或半自由粒子的能量大于位势, E > V ( x ) {\displaystyle E>V(x)\,\!} ,不会被位势束缚,能量不是离散能量谱的特殊值,而是大于或等于 V 0 {\displaystyle V_{0}\,\!} 的任意值。

本条目只论述强版定义的自由粒子。由于能量与位势都不是绝对值,可以设定位势为0,再根据新旧位势的差额,调整能量。

经典自由粒子的特点是它移动的速度 v {\displaystyle \mathbf {v} \,\!} 是不变的。它的动量 p {\displaystyle \mathbf {p} \,\!}

其中, m {\displaystyle m\,\!} 是粒子的质量。

能量 E {\displaystyle E\,\!}

描述一个非相对论性自由粒子的含时薛定谔方程为

其中, {\displaystyle \hbar } 是约化普朗克常数, Ψ ( r , t ) {\displaystyle \Psi (\mathbf {r} ,t)} 是粒子的波函数, r {\displaystyle \mathbf {r} } 是粒子的位置, t {\displaystyle t} 是时间。

这薛定谔方程有一个平面波解:

其中, k {\displaystyle \mathbf {k} } 是波矢, ω {\displaystyle \omega } 是角频率。

将这公式代入薛定谔方程,这两个变数必须遵守关系式

由于粒子存在的概率等于1,波函数 Ψ ( r , t ) {\displaystyle \Psi (\mathbf {r} ,t)\,\!} 必须归一化,才能够表达出正确物理意义。对于一般的自由粒子而言,这不是问题。因为,自由粒子的波函数,在位置或动量方面,都是局部性的。

动量的期望值是

能量的期望值是

代入波矢 k {\displaystyle \mathbf {k} \,\!} 与角频率 ω {\displaystyle \omega \,\!} 的关系方程,可以得到熟悉的能量与动量的关系方程:

波的群速度 v g {\displaystyle v_{g}\,\!} 定义为

其中, v {\displaystyle v\,\!} 是粒子的经典速度。

波的相速度 v g {\displaystyle v_{g}\,\!} 定义为

在量子力学里,一个自由粒子的动量与能量不必须拥有特定的值。自由粒子的波函数以波包函数表示为

其中,积分区域 K {\displaystyle \mathbb {K} } k {\displaystyle \mathbf {k} } -空间。

为了方便计算,只思考一维空间,

其中,振幅 A ( k ) {\displaystyle A(k)\,\!} 是量子叠加的系数函数。

逆反过来,系数函数表示为

其中, Ψ ( x ,   0 ) {\displaystyle \Psi (x,\ 0)\,\!} 是在时间 t = 0 {\displaystyle t=0\,\!} 的波函数。

所以,知道在时间 t = 0 {\displaystyle t=0\,\!} 的波函数 Ψ ( x ,   0 ) {\displaystyle \Psi (x,\ 0)\,\!} ,通过傅里叶变换,可以推导出在任何时间的波函数 Ψ ( x , t ) {\displaystyle \Psi (x,t)\,\!}

相对论性的自由粒子的量子行为,需要用特别的方程专门描述:

相关

  • 季节性流感疫苗季节性流感疫苗,常简称流感疫苗,是针对流行性感冒的疫苗。 因为流感病毒变化的速度很快,一年会发展新的流感疫苗两次。大部分状况下,疫苗有中度到高度的保护力;然而每年情况略有
  • 二甲基硫二甲基硫醚,是最简单的硫醚化合物。结构、性质与二甲基醚类似。常温下为无色挥发性液态。有着如海鲜般特殊气味物质。在自然界中,常由蛋白质的分解产生。这也是海鲜腥味的来源
  • 逆时针以逆时针方向运行指依从时针移动的相反方向(如图),即可视为由左上方向下,然后转向右,再回到上。也就是说逆时针方向就是顺时针方向的相反,也是镜射变换后的结果,故逆时针方向的反方
  • 加勒特阿尔梅达·加勒特子爵(葡萄牙语:Visconde de Almeida Garrett;葡萄牙语发音:.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lu
  • 黍部黍部,为汉字索引中的部首之一,康熙字典214个部首中的第二百〇二个(十二划的则为第二个)。就繁体和简体中文中,黍部归于十二划部首。黍部只以左方为部字。且无其他部首可用者将部
  • 日月《日月》(英语:),是一部于2018年拍摄,预计于2020年暑假上映的神话爱情电影。由迪丽热巴、窦骁领衔主演。2018年2月24日在海口正式开拍,6月6日剧组宣布杀青。
  • 三星导盲犬学校三星导盲犬学校(韩语:삼성안내견학교/三星案內犬學校 ,英语:Samsung Guide Dog School)是一所成立于1993年的韩国导盲犬学校,位于龙仁市爱宝乐园附近。学校由三星集团经营,是全球唯
  • 技术与继续教育学院澳洲技职教育(英语:Technical And Further Education,缩写:TAFE)是澳大利亚的一个教育制度。主要提供一个广泛的职业高等教育的课程,主要的课程排位在国家训练系统/澳大利亚资格框
  • 变叶木变叶木(学名:),又名洒金榕,大戟科,是常青灌木。原产于马来西亚半岛、南洋群岛、爪哇、澳洲等热带地区。叶序轮生,叶有倒卵形、倒披针形、倒卵状长椭圆形、螺旋形乃至线形等,外观千变
  • 乌咖喱乌咖喱(英语:ugali,有时也被称作:sima、sembe或posho)是用水煮熟的面团状的玉米粉食品,是东部非洲大湖地区和南部非洲饮食中最常见的淀粉类主食。传统吃法,是用手一次滚出一个小球,