布尔逻辑

✍ dations ◷ 2025-05-20 05:56:26 #逻辑,代数逻辑,布尔代数,形式逻辑系统

布尔逻辑(英语:Boolean algebra)得名于乔治·布尔,他是爱尔兰科克的皇后学院的英国数学家,他在十九世纪中叶首次定义了逻辑的代数系统。现在,布尔逻辑在电子学、计算机硬件和软件中有很多应用。在1937年,克劳德·艾尔伍德·香农展示了布尔逻辑如何在电子学中使用。

使用集合代数作为介绍布尔逻辑的一种方式。还使用文氏图来展示各种布尔逻辑陈述所描述的集合联系。

设是一个集合:

设图像为集合A包含"全集"中所有偶数(二的倍数),集合B包含"全集"中所有三的倍数。则两个集合的交集(在集合A AND B中所有的元素)将是"全集"中所有六的倍数。

集合A的补集(所有不在集合A中的元素)是"全集"中所有的奇数。

尽管在任何布尔运算中都最多有两个集合参与,从这个运算所形成的新集合可以接着与其他集合联合起来实现另外的布尔运算。使用前面的例子,我们可以定义一个新集合C作为"全集"中所有五的倍数的集合。所以"集合A AND B AND C"将是"全集"中所有30的倍数。如果为了更方便,我们可以把集合AB当作集合A和B的交集,或者说"全集"中所有六的倍数的集合。那么我们可以称"集合AB AND C"是"全集"中所有30的倍数的集合。我们接着进一步的把这个结果叫做集合ABC。

尽管任何数目的逻辑AND(或任何数目的逻辑OR)可以被连接在一起而没有歧义,AND和OR和NOT的组合可以导致歧义的情况。在这种情况下,可以使用圆括号来分清运算的次序。永远是最内的括号内的运算先进行,随后是外层的括号以此类推,直到在所有的括号内运算都完成。接着进行括号外的运算。

为两个主要的二元运算的符号定义为 / {\displaystyle \land /\cap } (逻辑与/交集)和 / {\displaystyle \lor /\cup } (逻辑或/并集),把单一的一元运算的符号定义为 ¬ {\displaystyle \lnot } / ~(逻辑非/补集)。我们还使用值0(逻辑假/空集)和1(逻辑真/全集)。下列性质适用于布尔代数和布尔逻辑二者:

布尔逻辑只使用两个值0和1,这两个值的交集和并集可以使用真值表定义如下:

可以使用各种样式的基本算符来表达布尔逻辑。AND(与)、OR(或)、NOT(非)是最直觉的。数学家、工程师和程序员经常使用 +表示或, {\displaystyle \cdot } 表示与(因为在某些方面这些运算类似于在其他代数结构中的加法和乘法,并且这种记号使熟悉普通代数的人易于得到积之和范式)。非也表示为在要否定的表达式顶上的一个横线。

另一种记号使用"交"表示与使用"并"表示或。但是这会导致混淆,因为术语"并"也经常用于合并集合的另一个布尔运算,它包括了与和或二者。

同样适用于联立不等式:

在把英语句子转换成形式的布尔语句的时候要小心。很多英语词语不精确的意义可能导致多种逻辑结果,例如英语单词NOT(非):“所有闪光的东西不是金子。”可以解析为以下不同的逻辑表达:

作为英语单词的AND(与)和OR(或)在特定情况下是可以互换使用的:

还要注意在英语中单词OR(或)可以分别对应于逻辑表达中的或(OR)(此亦彼亦)和异或(XOR)(此即彼非),具体意思要依赖于上下文进行判断:

在规定计算机程序或者电子电路时,如何使用英语准确描述其功能逻辑是个关键问题。例如,对于功能“程序应校验申请者已经选择取了男性或女性单选框”,应当被当作一个异或(非此即彼)逻辑(即“程序应校验申请者已经选择取了男性或女性选项,并且此二选项互相排他”),则程序语句须特别限定“二者之间只有一个能被选择”来确保校验功能的实现;假如将其混为或逻辑(此亦彼亦),则该校验功能有可能被错误地实现,造成申请者同时选择两个选项、而校验依然通过。

在其他非技术语言的情况下,对于一段英语文字的解释可能包含更多的不确定性,可能需要深入探讨、以确保明晰该段文字背后所含的逻辑意义的多种可能性。

布尔逻辑还在电子工程中的电路设计中使用;这里的0和1表示在数字电路中某一个位的不同状态,典型的是高和低电压。使用包含变量的表达式描述电路,并且对于这些变量的所有的值两个这种表达式是等价的,当且仅当对应的电路有相同的输入-输出行为。进一步的说,每种可能的输入-输出行为都被建模为适合的布尔表达式。

基本的逻辑闸比如与闸、或闸、非闸可以单独使用,或者联合成与非闸、或非闸和异或闸来控制数字电子和电路。这些闸的串联或并联控制了运算的优先级。

关系数据库使用SQL语言,或者其他特定于数据库的语言,来进行查询,它可以包含布尔逻辑。对于这种应用,在表中每个记录都可以被当作"集合"的"元素"。例如,在SQL中,下列SELECT语句被用来从在数据库中的表格中检索数据:

在有多个运算出现的时候,可以使用圆括号来明确的指定布尔运算发生的次序:

在需要的时候可以使用嵌套的圆括号。

联合两个(或更多)表格的任何布尔运算在关系数据库术语中都被称为连接。

对于这种应用,在互联网上的每个web页面都被当作是"集合"的"元素"。各种在线搜索引擎使用各自不同的语法。下面描述Google使用的语法。

相关

  • 轻偏瘫轻偏瘫(英语:Hemi-paresis)是人体左右某一侧出现的麻痹的症状,最严重时将导致偏瘫(英语:Hemi-plegia),或称半身不遂,即半个身体的完全麻痹。这两种症状的成因有很多,既有先天原因也有
  • 灰尘灰尘由固体物质的细小颗粒组成。在地球上,它通常由大气中的悬浮微粒组成,这些颗粒来自各种来源,例如土壤、因风蚀而被风带走的尘埃、火山爆发和其他空气污染。房屋、办公室和其
  • 亚利桑那州截至2010年亚利桑那州(英语:Arizona,i/ɛərᵻˈzoʊnə, ærᵻ-/)是美国一个位于西南部的州份,同时也是西部和山区州份之一。此州是美国第6大及人口第14大的州份。首府和最大城
  • 大陆法系民法法系(civil law),亦称欧陆法系、大陆法系、法典法系、市民法系(civilian law)、罗马法系(Roman law)、罗马日耳曼法系,是受罗马法影响而成立的法律系统,与普通法系并列为当今世界
  • 约翰·亨利·坡印廷约翰·亨利·坡印亭(英语:John Henry Poynting,FRS,1852年9月9日-1914年3月30日),英国物理学家。1880年至1900年担任梅森科学学院物理学教授,之后担任伯明翰大学教授直至去世。坡印
  • 芦竹碱芦竹碱(英语:gramine)又名禾草碱,是一种吲哚族生物碱,有毒。
  • 马克·奥利芬特马库斯·劳伦斯·艾尔文·奥利芬特AC KBE FRS FAA FTSE(英语:Sir Marcus Laurence Elwin "Mark" Oliphant,1901年10月8日-2000年7月14日),也称马克·奥利芬特是澳大利亚的物理学家
  • 沙县话沙县话(闽中语:)是闽中语的一种方言,主要通行于三明市的沙县一带。历史上,沙县曾是闽中地区的行政中心,因此,沙县话曾一度被当做闽中语的代表方言。沙县话以城关凤岗镇的城关腔为标
  • 上海开埠上海开埠,即1843年11月按照《中英南京条约》的条款,正式对外开放上海做指定通商口岸的历史事件。开埠标志着上海地区进入了近代时期,同时也促进了发展城市,即今日的上海市,在此后
  • 罗讷-阿尔卑斯罗讷-阿尔卑斯大区是已被合并的法国大区,位于法国的东南部。下辖安省(01)、阿尔代什省(07)、德龙省(26)、伊泽尔省(38)、卢瓦尔省(42)、罗讷省(69)、萨瓦省(73)、上萨瓦省(74)。与普罗旺斯-阿