布尔逻辑

✍ dations ◷ 2025-08-26 20:32:48 #逻辑,代数逻辑,布尔代数,形式逻辑系统

布尔逻辑(英语:Boolean algebra)得名于乔治·布尔,他是爱尔兰科克的皇后学院的英国数学家,他在十九世纪中叶首次定义了逻辑的代数系统。现在,布尔逻辑在电子学、计算机硬件和软件中有很多应用。在1937年,克劳德·艾尔伍德·香农展示了布尔逻辑如何在电子学中使用。

使用集合代数作为介绍布尔逻辑的一种方式。还使用文氏图来展示各种布尔逻辑陈述所描述的集合联系。

设是一个集合:

设图像为集合A包含"全集"中所有偶数(二的倍数),集合B包含"全集"中所有三的倍数。则两个集合的交集(在集合A AND B中所有的元素)将是"全集"中所有六的倍数。

集合A的补集(所有不在集合A中的元素)是"全集"中所有的奇数。

尽管在任何布尔运算中都最多有两个集合参与,从这个运算所形成的新集合可以接着与其他集合联合起来实现另外的布尔运算。使用前面的例子,我们可以定义一个新集合C作为"全集"中所有五的倍数的集合。所以"集合A AND B AND C"将是"全集"中所有30的倍数。如果为了更方便,我们可以把集合AB当作集合A和B的交集,或者说"全集"中所有六的倍数的集合。那么我们可以称"集合AB AND C"是"全集"中所有30的倍数的集合。我们接着进一步的把这个结果叫做集合ABC。

尽管任何数目的逻辑AND(或任何数目的逻辑OR)可以被连接在一起而没有歧义,AND和OR和NOT的组合可以导致歧义的情况。在这种情况下,可以使用圆括号来分清运算的次序。永远是最内的括号内的运算先进行,随后是外层的括号以此类推,直到在所有的括号内运算都完成。接着进行括号外的运算。

为两个主要的二元运算的符号定义为 / {\displaystyle \land /\cap } (逻辑与/交集)和 / {\displaystyle \lor /\cup } (逻辑或/并集),把单一的一元运算的符号定义为 ¬ {\displaystyle \lnot } / ~(逻辑非/补集)。我们还使用值0(逻辑假/空集)和1(逻辑真/全集)。下列性质适用于布尔代数和布尔逻辑二者:

布尔逻辑只使用两个值0和1,这两个值的交集和并集可以使用真值表定义如下:

可以使用各种样式的基本算符来表达布尔逻辑。AND(与)、OR(或)、NOT(非)是最直觉的。数学家、工程师和程序员经常使用 +表示或, {\displaystyle \cdot } 表示与(因为在某些方面这些运算类似于在其他代数结构中的加法和乘法,并且这种记号使熟悉普通代数的人易于得到积之和范式)。非也表示为在要否定的表达式顶上的一个横线。

另一种记号使用"交"表示与使用"并"表示或。但是这会导致混淆,因为术语"并"也经常用于合并集合的另一个布尔运算,它包括了与和或二者。

同样适用于联立不等式:

在把英语句子转换成形式的布尔语句的时候要小心。很多英语词语不精确的意义可能导致多种逻辑结果,例如英语单词NOT(非):“所有闪光的东西不是金子。”可以解析为以下不同的逻辑表达:

作为英语单词的AND(与)和OR(或)在特定情况下是可以互换使用的:

还要注意在英语中单词OR(或)可以分别对应于逻辑表达中的或(OR)(此亦彼亦)和异或(XOR)(此即彼非),具体意思要依赖于上下文进行判断:

在规定计算机程序或者电子电路时,如何使用英语准确描述其功能逻辑是个关键问题。例如,对于功能“程序应校验申请者已经选择取了男性或女性单选框”,应当被当作一个异或(非此即彼)逻辑(即“程序应校验申请者已经选择取了男性或女性选项,并且此二选项互相排他”),则程序语句须特别限定“二者之间只有一个能被选择”来确保校验功能的实现;假如将其混为或逻辑(此亦彼亦),则该校验功能有可能被错误地实现,造成申请者同时选择两个选项、而校验依然通过。

在其他非技术语言的情况下,对于一段英语文字的解释可能包含更多的不确定性,可能需要深入探讨、以确保明晰该段文字背后所含的逻辑意义的多种可能性。

布尔逻辑还在电子工程中的电路设计中使用;这里的0和1表示在数字电路中某一个位的不同状态,典型的是高和低电压。使用包含变量的表达式描述电路,并且对于这些变量的所有的值两个这种表达式是等价的,当且仅当对应的电路有相同的输入-输出行为。进一步的说,每种可能的输入-输出行为都被建模为适合的布尔表达式。

基本的逻辑闸比如与闸、或闸、非闸可以单独使用,或者联合成与非闸、或非闸和异或闸来控制数字电子和电路。这些闸的串联或并联控制了运算的优先级。

关系数据库使用SQL语言,或者其他特定于数据库的语言,来进行查询,它可以包含布尔逻辑。对于这种应用,在表中每个记录都可以被当作"集合"的"元素"。例如,在SQL中,下列SELECT语句被用来从在数据库中的表格中检索数据:

在有多个运算出现的时候,可以使用圆括号来明确的指定布尔运算发生的次序:

在需要的时候可以使用嵌套的圆括号。

联合两个(或更多)表格的任何布尔运算在关系数据库术语中都被称为连接。

对于这种应用,在互联网上的每个web页面都被当作是"集合"的"元素"。各种在线搜索引擎使用各自不同的语法。下面描述Google使用的语法。

相关

  • 玛拉玛颂城堡马尔梅松城堡(法语:Château de Malmaison 法语发音:.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida Sans Unicode","C
  • 恩基其他传说恩基(Enki,/ˈɛŋki/; 苏美语: dEN.KI(G)),又译为恩奇,是苏美神话中的一位水神,后在阿卡德和巴比伦神话中被称为埃亚。他原本是埃利都的守护神,但后来对他的崇拜遍及整个
  • 外显记忆陈述性记忆(英语:Explicit memory),是一种有意识的,对先前经验的回忆。跟内隐记忆不同。有时也会被称为是一种陈述性记忆。跟它相对的,称为内隐记忆,是一种无意识的、与程序动作有
  • 印地安人美洲原住民,是对美洲所有原住民的总称。美洲原住民中的绝大多数为印第安人,剩下的则是主要位于北美洲北部的因纽特人。美洲原住民属于东亚人种美洲支系,与现代东亚人有共同的祖
  • 公共利益公益可以指:
  • 徐福徐福(?-?),即徐巿(“巿”,拼音:fú,注音:ㄈㄨˊ,分勿切,音同“弗”),字君房,秦朝时齐地人,为一方士,曾担任秦始皇的御医。徐福的事迹,最早见于《史记》的“秦始皇本纪”和“淮南衡山列传”(在秦
  • 舌尖上的粤语《舌尖上的粤语》是广州本土网站羊城网为保护粤语于2012年12月5日推出的视频短片,推出4日在优酷网点击率超过190万次,新浪微博转发量超过5万次,在中国大陆无法访问的海外视频网
  • 鼠鸟目鼠鸟科(学名:Coliidae)是鸟纲鼠鸟目(Coliiformes)仅有的一个科,共2属6种。这个目的鸟形态像啮齿类,被笼统地称为鼠鸟,仅分布撒哈拉沙漠以南的非洲大陆。鼠鸟目的鸟曾在广阔的范围分
  • 考克尼考克尼(英语:Cockney)一词意指英国伦敦的工人阶级,尤其可以指伦敦东区以及当地民众使用的考克尼方言(即伦敦方言)。这个词也可指在伦敦的工人阶级中非常常见的“考克尼口音”,即伦
  • 人腿人类腿部,或称人腿,一般指的是人体的整个下肢部分,包括足部、大腿甚至髋关节等。然而,人体解剖一般谈及“人腿”时,指的只是从膝盖到脚踝的这一段下肢,也称“小腿”。腿部在站立以