影像撤销的目的是在预先定义好的意义上改善一幅影像,不同于影像增强主要是一个主观的程序,影像撤销大致为一个客观的程序。修复是利用退化现象的某种先验知识,试图把已经退化的影像加以重建或修复。
如下图,退化程序可以被模式化成一个退化函数(Degradation function),连同加成性噪声(Noise)η(x,y)共同作用在一输入影像f(x,y)上,产生一退化影像g(x,y):
A1 = zmed – zmin
A2 = zmed – zmax
If A1 > 0 AND A2 < 0, Go to level B
Else increase the window size
If window size ≤ Smax repeat level A
Else output zxy
B1 = zxy – zmin
B2 = zxy – zmax
If B1 > 0 AND B2 < 0, output zxy
Else output zmed
周期性噪声经常以在傅里叶频谱中可见的脉冲状串集呈现。对这些成分滤波的主要方法是经由带陷滤波。n阶发特沃斯带陷滤波器的转移函数为:
其中
且
其中(u0,v0)且依对称性(-u0,-v0)是“凹陷”的位置,而D0是他们半径的量测。
我们撤销一张退化影像所能采取的最简单方法是形成形式如下的一个估测:然后借由的反傅里叶转换获得域个影像的相对应估测,这个方法被称为反滤波(inverse filtering),由影像撤销模型,我们可以将我们的估测表示成:由此式可知,即使我们确切的知道H(u,v),我们仍无法撤销F(u,v),因为噪声分量是一个它的傅里叶转换N(u,v)未知的随机函数。此外通常实际上有一个问题是函数H(u,v)有许多零点。即使N(u,v)这一项可忽视,将他除以H(u,v)几乎为零的值会主宰撤销的估测。
试图反滤波的典型方法是形成比值,然后限制获得这个反滤波的频率范围到“接近”原点的频率。此想法是H(u,v)中零点比较不可能再接近原点处发生,因为通常转换的大小在该区域中有其最高值。有许多基调的变形,其中在H是零或靠近零的(u,v)处特别处理。这种方法有时称为虚拟反(pseudoinverse)滤波。
Wiener滤波寻求使以下统计误差函数最小化的估测 :
其中E是期望值运算符而f是未退化的影像。此表示式在频率域中的解为:
其中
=退化函数
的共轭复数
=噪声方功率频谱
=未退化影像的功率频谱
比值(u,v)/(u,v)称为噪声对信号功率比,可以看出对所有u和v的相关值,如果噪声功率频谱为零,则此比值成为零,而Wiener滤波器简化成在反滤波器。