影像撤销

✍ dations ◷ 2025-02-01 01:59:41 #影像科技

影像撤销的目的是在预先定义好的意义上改善一幅影像,不同于影像增强主要是一个主观的程序,影像撤销大致为一个客观的程序。修复是利用退化现象的某种先验知识,试图把已经退化的影像加以重建或修复。

如下图,退化程序可以被模式化成一个退化函数(Degradation function),连同加成性噪声(Noise)η(x,y)共同作用在一输入影像f(x,y)上,产生一退化影像g(x,y):

g ( x , y ) = H + η ( x , y ) {\displaystyle g(x,y)=H+\eta (x,y)}

A1 = zmed – zmin

A2 = zmed – zmax

If A1 > 0 AND A2 < 0, Go to level B

Else increase the window size

If window size ≤ Smax repeat level A

Else output zxy

B1 = zxy – zmin

B2 = zxy – zmax

If B1 > 0 AND B2 < 0, output zxy

Else output zmed

周期性噪声经常以在傅里叶频谱中可见的脉冲状串集呈现。对这些成分滤波的主要方法是经由带陷滤波。n阶发特沃斯带陷滤波器的转移函数为: H ( u , v ) = 1 1 + n {\displaystyle H(u,v)={\cfrac {1}{1+\left^{n}}}}

其中

D 1 ( u , v ) = 1 2 {\displaystyle D_{1}(u,v)=^{\frac {1}{2}}}

D 2 ( u , v ) = 1 2 {\displaystyle D_{2}(u,v)=^{\frac {1}{2}}}

其中(u0,v0)且依对称性(-u0,-v0)是“凹陷”的位置,而D0是他们半径的量测。

H ( u , v ) = { 1 if  D ( u , v ) < D 0 W 2 0 if  D 0 W 2 D ( u , v ) D 0 + W 2 1 if  D ( u , v ) > D 0 + W 2 {\displaystyle H(u,v)={\begin{cases}1&{\mbox{if }}D(u,v)<D_{0}-{\frac {W}{2}}\\0&{\mbox{if }}D_{0}-{\frac {W}{2}}\leqslant D(u,v)\leqslant D_{0}+{\frac {W}{2}}\\1&{\mbox{if }}D(u,v)>D_{0}+{\frac {W}{2}}\\\end{cases}}}

H ( u , v ) = 1 1 + 2 n {\displaystyle H(u,v)={\cfrac {1}{1+\left^{2n}}}}

H ( u , v ) = 1 e 1 2 2 {\displaystyle H(u,v)=1-e^{-{\frac {1}{2}}\left^{2}}}

H B P ( u , v ) = 1 H B R ( u , v ) {\displaystyle H_{BP}(u,v)=1-H_{BR}(u,v)}

H N P ( u , v ) = 1 H N R ( u , v ) {\displaystyle H_{NP}(u,v)=1-H_{NR}(u,v)}

H ( u , v ) = { 0 if  D 1 ( u , v ) D 0  or  D 1 ( u , v ) D 0 1 otherwise  {\displaystyle H(u,v)={\begin{cases}0&{\mbox{if }}D_{1}(u,v)\leqslant D_{0}{\mbox{ or }}D_{1}(u,v)\leqslant D_{0}\\1&{\mbox{otherwise }}\end{cases}}}

H ( u , v ) = 1 1 + n {\displaystyle H(u,v)={\frac {1}{1+\left^{n}}}}

H ( u , v ) = 1 e 1 2 2 {\displaystyle H(u,v)=1-e^{-{\frac {1}{2}}\left^{2}}}

我们撤销一张退化影像所能采取的最简单方法是形成形式如下的一个估测: F ^ ( u , v ) = G ( u , v ) H ( u , v ) {\displaystyle {\hat {F}}(u,v)={\frac {G(u,v)}{H(u,v)}}} 然后借由 F ^ ( u , v ) {\displaystyle {\hat {F}}(u,v)} 的反傅里叶转换获得域个影像的相对应估测,这个方法被称为反滤波(inverse filtering),由影像撤销模型,我们可以将我们的估测表示成: F ^ ( u , v ) = F ( u , v ) + N ( u , v ) H ( u , v ) {\displaystyle {\hat {F}}(u,v)=F(u,v)+{\frac {N(u,v)}{H(u,v)}}} 由此式可知,即使我们确切的知道H(u,v),我们仍无法撤销F(u,v),因为噪声分量是一个它的傅里叶转换N(u,v)未知的随机函数。此外通常实际上有一个问题是函数H(u,v)有许多零点。即使N(u,v)这一项可忽视,将他除以H(u,v)几乎为零的值会主宰撤销的估测。

试图反滤波的典型方法是形成比值 F ^ ( u , v ) = G ( u , v ) H ( u , v ) {\displaystyle {\hat {F}}(u,v)={\frac {G(u,v)}{H(u,v)}}} ,然后限制获得这个反滤波的频率范围到“接近”原点的频率。此想法是H(u,v)中零点比较不可能再接近原点处发生,因为通常转换的大小在该区域中有其最高值。有许多基调的变形,其中在H是零或靠近零的(u,v)处特别处理。这种方法有时称为虚拟反(pseudoinverse)滤波。

Wiener滤波寻求使以下统计误差函数最小化的估测 f ^ {\displaystyle {\hat {f}}}  :

e 2 = E ( f f ^ 2 ) {\displaystyle e^{2}=E{(f-{\hat {f}}^{2})}}

其中E是期望值运算符而f是未退化的影像。此表示式在频率域中的解为: F ^ ( u , v ) = G ( u , v ) {\displaystyle {\hat {F}}(u,v)=\leftG(u,v)}

其中

H ( u , v ) {\displaystyle H(u,v)} =退化函数

| H ( u , v ) | 2 = H ( u , v ) H ( u , v ) {\displaystyle \left|H(u,v)\right|^{2}=H*(u,v)H(u,v)}

H ( u , v ) = H ( u , v ) {\displaystyle H*(u,v)=H(u,v)} 的共轭复数

S η ( u , v ) {\displaystyle S_{\eta }(u,v)} =噪声方功率频谱

S f ( u , v ) {\displaystyle S_{f}(u,v)} =未退化影像的功率频谱

比值 S η {\displaystyle S_{\eta }} (u,v)/ S f {\displaystyle S_{f}} (u,v)称为噪声对信号功率比,可以看出对所有u和v的相关值,如果噪声功率频谱为零,则此比值成为零,而Wiener滤波器简化成在反滤波器。

相关

  • 甲氧氟醚甲氧氟醚(INN),商品名Penthrane,是种在1970和80年代相当流行的卤代醚全身麻醉药。本化合物由威廉·穆勒(William T. Miller)在曼克顿计划的技术积累之上于1948年首次合成。甲氧氟
  • 盾形动物门盾形动物门(学名:Proarticulata),又名盾状动物门,是一个已经完全灭绝的动物门,由Mikhail Fedonkin(英语:Mikhail Fedonkin)在1985年所建立。它们是一类非常早期的两侧对称动物。其化
  • 私学私塾,也叫私学 、私塾,或学堂,是古中国的私立学校或补习班,流行于受儒家影响的文化圈。私塾大多由读书人、秀才等私人开办,由教书者(称为塾师)在自宅设立,入学者多系六岁至八岁孩童
  • 国家食品药品监督管理总局1999年规定:印章直径5厘米,中央刊国徽,由国务院制发。国家食品药品监督管理总局标识中华人民共和国食品药品监管执法徽标国家食品药品监督管理总局(官方英语译名:China Food and
  • 瘦身 (消歧义)瘦身可以指:
  • Nancy, Jean-Luc让-吕克·南希(法语:Jean-Luc Nancy,1940年7月26日-),法国哲学家。南希1962年毕业于巴黎索邦大学哲学系,而后在斯特拉斯堡大学担任助理教授。1973年在知名哲学家保罗·利科(Paul Ri
  • 江户幕府将军江户幕府将军列表中列出日本江户幕府时期,德川氏十五任征夷大将军的列表。德川家的将军除了秀忠以外,在就任同时都会一并得到源氏长者的称号,死后也会追赠正一位的地位。15位将
  • AMS计划阿尔法磁谱仪(Alpha Magnetic Spectrometer,又译反物质太空磁谱仪,简称AMS)是一个安装于国际空间站上的粒子物理试验设备,最初由麻省理工大学的物理学家,诺贝尔物理学奖得主丁肇中
  • 制宪会议美国宪法建立于1787年,美国与英国之间的美国独立战争结束四年之后。美国宪法是邦联条例的后继者,但是其本源是英国宪法大宪章和英国权利法案。1607年,英国政府派遣一些农民到新
  • 二面体群其他有限群 对称群, 二面体群, 无限群 整数, Z 模群, PSL(2,Z) 和 SL(2,Z) G2 F4E6 E7E8 劳仑兹群 庞加莱群 环路群 量子群 O(∞) SU(∞) Sp(∞) 在数学中,二面体群