庞特里亚金对偶性

✍ dations ◷ 2025-04-04 11:16:10 #拓扑群,调和分析,傅里叶分析,对偶理论

在数学上,特别是在调和分析与拓扑群的理论中,庞特里雅金对偶定理解释了傅里叶变换的一般性质。它统合了实数线上或有限阿贝尔群上的一些结果,如:

此理论由庞特里亚金(Lev Pontryagin)首开,并结合了约翰·冯·诺伊曼与安德鲁·韦伊的哈尔测度理论,它依赖于局部紧阿贝尔群的对偶群理论。

一个拓扑群 G {\displaystyle G} 是整数。由于 T {\displaystyle \mathbb {T} } 是实数。借着这些对偶性,下节描述的傅里叶变换将符应于 R {\displaystyle \mathbb {R} }

群代数的重要性质之一,在于这些线性泛函穷竭了群代数上所有非平凡(即:非恒零)的积性线性泛函。见文献中著作的第34节。

如前所述,一个局部紧阿贝尔群 G {\displaystyle G} 书中术语,我们称一对 G {\displaystyle G} ,当且仅当傅里叶反转公式成立。傅里叶变换之幺正性遂蕴含:对所有 G {\displaystyle G} 上的连续紧支集复数值函数 f {\displaystyle f} 都有

在平方可积函数空间上,我们考虑的傅里叶变换是透过上述幺正延拓得到的算子。对偶群本身也有个傅里叶逆变换;它可以刻划为傅里叶变换之逆(或其伴随算子,因为傅里叶变换是幺正的),这是以下傅里叶反转公式的内涵。

定理:取定一对相系哈尔测度 ( μ , ν ) {\displaystyle (\mu ,\nu )} ;对于傅里叶变换在紧支集连续函数上的限制,其伴随算子是傅里叶逆变换:

庞特里亚金对偶定理的重要应用之一是下述刻划:

定理:一个局部紧阿贝尔群 G {\displaystyle G} 为紧,当且仅当对偶群 G ^ {\displaystyle {\hat {G}}} 为离散。另一方面, G {\displaystyle G} 为离散当且仅当 G ^ {\displaystyle {\hat {G}}} 为紧。

对任何拓扑群,无论局部紧或交换与否,皆可定义玻尔紧化。上述对偶性的用处之一是刻划局部紧阿贝尔群的玻尔紧化。对一个局部紧阿贝尔群 G {\displaystyle G} ,考虑拓扑群 H ^ {\displaystyle {\hat {H}}} ,其中 H {\displaystyle H} 就群结构而言是 G ^ {\displaystyle {\hat {G}}} ,但带离散拓扑。由于下述包含映射

是个连续同态,其对偶同态

是个映至一个紧群的同态;可以证明它满足定义玻尔紧化的泛性质,因而 H ^ {\displaystyle {\hat {H}}} 确为 G {\displaystyle G} 的玻尔紧化。

函子的观点对于研究对偶群是很有用的。以下将以LCA表示所有局部紧阿贝尔群及其间的连续群同态构成之范畴。

对偶群的构造 G G ^ {\displaystyle G\mapsto {\hat {G}}} 给出一个对偶函子 L C A L C A o p {\displaystyle \mathbf {LCA} \rightarrow \mathbf {LCA} ^{\mathrm {op} }} 。其二次迭代 G G {\displaystyle G\mapsto G^{\wedge \wedge }} 遂给出函子 L C A L C A {\displaystyle \mathbf {LCA} \rightarrow \mathbf {LCA} }

定理:对偶函子是一个范畴等价。

定理:对偶函子的二次迭代自然同构于LCA上的恒等函子。

此同构可以类比于有限维向量空间的二次对偶(特别是实与复向量空间)。

庞特里亚金对偶性将离散群与紧群的子范畴交换。若 R {\displaystyle R} 是一个环,而 G {\displaystyle G} 是个左 R {\displaystyle R} -模,则从对偶性可推知离散左 R {\displaystyle R} -模与紧右 R {\displaystyle R} -模对偶。LCA里的自同态环 E n d ( G ) {\displaystyle \mathrm {End} (G)} 依对偶性对应至其反环(即:环的乘法次序交换)。举例明之:取 G = Z {\displaystyle G=\mathbb {Z} } ,则 G ^ = T {\displaystyle {\hat {G}}=\mathbb {T} } ;前者满足 E n d ( G ) = Z {\displaystyle \mathrm {End} (G)=\mathbb {Z} } ,对后者亦然。

对非交换群 G {\displaystyle G} 没有类似的理论,因为此时对偶的对象 G ^ {\displaystyle {\hat {G}}} ={ G {\displaystyle G} 的不可约表示之同构类}不只有一维表示,因此不构成一个群。在范畴论中类似的推广称作Tannaka-Krein对偶定理;但它缺乏与调和分析的联系,因而无法处理关于 G ^ {\displaystyle {\hat {G}}} 上的普朗歇尔测度的问题。

某些非交换群的对偶理论以C*-代数的语言表述。

庞特里亚金在1934年为局部紧阿贝尔群及其对偶性的理论奠下基础。他的进路须假定群是第二可数的,并且是紧群或离散群。此条件先后由E.R. van Kampen(1935年)与安德鲁·韦伊(1953年)改进为局部紧阿贝尔群。

下列书籍(可在大部分大学图书馆找到)都有局部紧阿贝尔群、对偶定理与傅里叶变换的相关章节。Dixmier的著作有非交换调和分析的材料,也有英译本。

相关

  • 可计算函数在可计算性理论中,可计算函数(computable function)或图灵可计算函数是研究的基本对象。它们使我们直觉上的算法概念更加精确。使用可计算函数来讨论可计算性而不提及任何具体
  • 糖基化糖基化(英语:Glycosylation)是在酶的控制下, 蛋白质或脂质附加上糖类的过程。此过程为四种共转译(co-translational)与后转译修饰的的一种形式,发生于高基氏体。蛋白质经过糖基化
  • 绍斯塔克杰克·威廉·绍斯塔克(英语:Jack William Szostak,1952年11月9日-),美国生物学家、霍华德·休斯医学研究所研究员、哈佛医学院遗传学教授、麻省总医院亚历山大·里奇杰出研究员。
  • 美式中国菜美式中国菜(英语:American Chinese cuisine)是在美利坚合众国创造的中国菜。其中,美式中国菜与中国菜最大的不同是烹饪和调味方式的改变。在19世纪,有中国人在美国在小村庄里开设
  • 纤维心包心包,又名心膜,是一个圆锥形双层纤维浆膜囊,包裹心脏和出入心脏大血管根部。心包的两层分别为:心包的学名pericardium来自希腊语的περι(环绕、周围)与κάρδιον(心脏)两字
  • 禁锢禁锢可以指:
  • 京基百纳空间京基百纳空间(英文:KK Mall)位于广东省深圳罗湖区蔡屋围深南东路5016号,是深圳市的大型商场。项目原址为蔡屋围,是蔡屋围改造计划的一部分。商场每一层都以“空间”为主题,负一楼
  • 钱王祠坐标:30°14′42″N 120°09′11″E / 30.24500°N 120.15306°E / 30.24500; 120.15306钱王祠位于中国浙江省杭州市西湖东岸柳浪闻莺公园内,始建于北宋熙宁十年,供奉吴越国三
  • 长春花属长春花属(学名:)包含了八种多年生的草本植物。其中七种原产于马达加斯加岛,而第八种则来自斯里兰卡。先前这属植物被列于近亲属—蔓长春花属()—之内。其中一种植物日日春()被广
  • 心动的信号《心动的信号》,原作是韩国Channel A于2017年开始制作的综艺节目《Heart Signal》,是腾讯视频于2018年制作的综艺节目,由姜思达、张雨绮、朱亚文、官鸿、杨超越、姜振宇等人主