q阿佩尔函数(q-Appell function)又名q阿佩尔多项式(q-Appell polynomials)是数学家Jackson创立的阿佩尔函数的q模拟
《美国国家标准局数学函数手册》中给出的定义如下
q-阿佩尔函数是二变数超几何函数,共四个:
Φ ( 1 ) ( a ; b , b ′ ; c ; x , y ) = ∑ m , n > 0 {\displaystyle \Phi ^{(1)}(a;b,b';c;x,y)=\sum _{m,n>0}} ( a ; q ) m + n ∗ ( b ; q ) m ∗ ( b ′ ; q ) n ∗ x m ∗ y n ( q ; q ) m ∗ ( q ; q ) n ∗ ( c ; q ) m + n {\displaystyle {\frac {(a;q)_{m+n}*(b;q)_{m}*(b';q)_{n}*x^{m}*y^{n}}{(q;q)_{m}*(q;q)_{n}*(c;q)_{m+n}}}}
Φ ( 2 ) ( a ; b , b ′ ; c ; x , y ) = ∑ m , n > 0 {\displaystyle \Phi ^{(2)}(a;b,b';c;x,y)=\sum _{m,n>0}} ( a ; q ) m + n ∗ ( b ; q ) m ∗ ( b ′ ; q ) n ∗ x m ∗ y n ( q ; q ) m ∗ ( q ; q ) n ∗ ( c ; q ) m + n {\displaystyle {\frac {(a;q)_{m+n}*(b;q)_{m}*(b';q)_{n}*x^{m}*y^{n}}{(q;q)_{m}*(q;q)_{n}*(c;q)_{m+n}}}}
Φ ( 3 ) ( a , a ′ ; b , b ′ ; c ; x , y ) = ∑ m , n > 0 {\displaystyle \Phi ^{(3)}(a,a';b,b';c;x,y)=\sum _{m,n>0}} ( a , b ; q ) m ∗ ( a ′ , b ′ ; q ) n ∗ x m ∗ y n ( q ; q ) m ∗ ( q ; q ) n ∗ ( c ; q ) m + n {\displaystyle {\frac {(a,b;q)_{m}*(a',b';q)_{n}*x^{m}*y^{n}}{(q;q)_{m}*(q;q)_{n}*(c;q)_{m+n}}}}
Φ ( 4 ) ( a ; b ; c , c ′ ; x , y ) = ∑ m , n > 0 {\displaystyle \Phi ^{(4)}(a;b;c,c';x,y)=\sum _{m,n>0}} ( a , b ; q ) m + n ∗ x m ∗ y n ( q , c ; q ) m ∗ ( q , c ′ ; q ) n {\displaystyle {\frac {(a,b;q)_{m+n}*x^{m}*y^{n}}{(q,c;q)_{m}*(q,c';q)_{n}}}}
其中
为Q阶乘幂
Φ ( 2 ) ( a ; b , b ′ ; c , c ′ ; x , y ) = ( b , a x ; q ) ∞ ( c , x , y ; q ) ∞ ∑ ( ∑ ( a , b ′ ; q ) n ( x ; q ) r ( c / a ; q ) r ( q , c ′ ; q ) n ( q ) r ( a x ; q ) n + r , m = 1.. ∞ ) , r = 1.. ∞ ) {\displaystyle \Phi ^{(2)}(a;b,b';c,c';x,y)={\frac {(b,ax;q)_{\infty }}{(c,x,y;q)_{\infty }}}\sum (\sum {\frac {(a,b';q)_{n}(x;q)_{r}(c/a;q)_{r}}{(q,c';q)_{n}(q)_{r}(ax;q)_{n+r}}},m=1..\infty ),r=1..\infty )} .