作用量-角度坐标

✍ dations ◷ 2025-07-09 16:01:14 #经典力学,哈密顿力学,坐标系

在经典力学里,作用量-角度坐标(action-angle coordinate)是一组正则坐标,通常在解析可积分系统 (Integrable system) 时,有很大的用处。应用作用量-角度坐标的方法,不需要先解析运动方程,就能够求得振动或旋转的频率。作用量-角度坐标主要用于完全可分的 哈密顿-亚可比方程(哈密顿量显性地不含时间,也就是说,能量保持恒定)。作用量-角度变数可以用来定义一个环面不变量。因为,保持作用量的不变设定了环的曲面,而角度是环面的另外一个坐标,粒子依照着角度,卷绕于环面。

在量子力学早期,波动力学发展成功之前,玻尔-索末菲量子化条件 (Bohr-Sommerfeld quantization) 是研究量子力学的利器。此条件阐明,作用量必须是普朗克常数常数的整数倍。爱因斯坦对于 Einstein-Brillouin-Keller action quantization 深刻的理解 与 非可积分系统 量子化的困难,都是以 作用量-角度坐标的环面不变量 来表达。

在哈密顿力学里,作用量-角度坐标也可以应用于摄动理论,特别是在决定缓渐不变量。关于一个自由度很小的动力系统的非线形摄动,混沌理论研究的最早的一个结果是 KAM theorem 。这定理阐明,对于微小摄动,环面不变量是稳定的。

作用量-角度坐标,对于户田晶格 (Toda field theory) 的解析,对于 Lax pairs 的定义,更广义地,对于一个系统同光谱 (isospectral) 演化的构想,都占有关键地位。

假设,在一个物理系统里,哈密顿量是保守的,也就是说,哈密顿量 H {\displaystyle {\mathcal {H}}} 不显含时间;

其中, a H {\displaystyle a_{\mathcal {H}}} 是运动常数, q {\displaystyle \mathbf {q} } 是广义坐标, p {\displaystyle \mathbf {p} } 是广义动量。

采用哈密顿特征函数 W ( q ;   P ) {\displaystyle W(\mathbf {q} ;\ \mathbf {P} )} 为正则变换的第二型生成函数。变换方程为

其中, Q {\displaystyle \mathbf {Q} } 是新广义坐标, P {\displaystyle \mathbf {P} } 是新广义动量。

新哈密顿量 K {\displaystyle {\mathcal {K}}} 与旧哈密顿量 H {\displaystyle {\mathcal {H}}} 相等:

新广义动量的哈密顿方程为

所以,新广义动量是常数 a {\displaystyle \mathbf {a} }

假设,这物理系统的哈密顿-亚可比方程 H ( q ,   W q ) = a H {\displaystyle {\mathcal {H}}\left(\mathbf {q} ,\ {\frac {\partial W}{\partial \mathbf {q} }}\right)=a_{\mathcal {H}}} 为完全可分的,则哈密顿特征函数 W ( q ;   P ) {\displaystyle W(\mathbf {q} ;\ \mathbf {P} )} 可以分离为 n {\displaystyle n} 个函数 W i {\displaystyle W_{i}}

哈密顿特征函数与新旧正则坐标的关系是

假若,粒子的运动是周期性运动,最常见的例子如振动或旋转都是周期性运动,则可以设计一个新正则坐标-作用量-角度坐标 ( w ,   J ) {\displaystyle (\mathbf {w} ,\ \mathbf {J} )} 。定义作用量为

这闭路径积分的路径是粒子运动一周期的路径。

由于广义动量 p i {\displaystyle p_{i}} 只跟 q i {\displaystyle q_{i}} a {\displaystyle \mathbf {a} } 有关,经过积分,作用量 J i {\displaystyle J_{i}} 只跟 a {\displaystyle \mathbf {a} } 有关。所以,作用量矢量 J {\displaystyle \mathbf {J} } 只是个常数矢量。哈密顿特征函数可以表达为

虽然是同样的物理量,函数的参数不同,形式也不同。

定义角度 w {\displaystyle \mathbf {w} }

由于所有的广义坐标 q i {\displaystyle q_{i}} 都相互独立,所有的广义动量 p i {\displaystyle p_{i}} 也都相互独立,所以,所有的作用量 J i {\displaystyle J_{i}} 都相互独立,作用量-角度坐标可以正确的用为正则坐标。这样,哈密顿特征函数可以用正则坐标作用量-角度坐标表达为

新哈密顿量 K {\displaystyle {\mathcal {K}}'} 与旧哈密顿量 H {\displaystyle {\mathcal {H}}} 相等:

因为作用量 J i = J i ( a ) {\displaystyle J_{i}=J_{i}(\mathbf {a} )} 只是常数矢量,所以,

新哈密顿量 K = K ( J ) {\displaystyle {\mathcal {K}}'={\mathcal {K}}'(\mathbf {J} )} ,只跟作用量 J {\displaystyle \mathbf {J} } 有关,跟角度 w {\displaystyle \mathbf {w} } 无关。

角度 w i {\displaystyle w_{i}} 随时间的导数 ν i {\displaystyle \nu _{i}} ,可以用哈密顿方程决定:

每一个 J i {\displaystyle J_{i}} 都是常数,所以, ν i ( J ) {\displaystyle \nu _{i}(\mathbf {J} )} 也是常数:

其中, β i {\displaystyle \beta _{i}} 是积分常数。

假设原本广义坐标 q i {\displaystyle q_{i}} 的振荡或旋转的运动周期为 T i {\displaystyle T_{i}} ,则其对应的角度变数 w i {\displaystyle w_{i}} 的改变是 Δ w i = ν i T i {\displaystyle \Delta w_{i}=\nu _{i}T_{i}} 。进一步了解物理量 ν i {\displaystyle \nu _{i}} 的性质,猜想 ν i {\displaystyle \nu _{i}} 与广义坐标 q i {\displaystyle q_{i}} 周期性运动的频率有关。可是,因为角度 w i {\displaystyle w_{i}} 是广义坐标 q {\displaystyle \mathbf {q} } 与作用量 J {\displaystyle \mathbf {J} } 的函数,无法确定前面的猜想。为了证实这论点,计算周期 T i {\displaystyle T_{i}}

新哈密顿量 K ( J ) {\displaystyle {\mathcal {K}}'(\mathbf {J} )} 与旧哈密顿量 H {\displaystyle {\mathcal {H}}} 相等。所以,

假若 q j {\displaystyle q_{j}} 是个循环坐标,那么,其共轭动量 p j {\displaystyle p_{j}} 必是个常数,可以从作用量的定义积分内提出来:

其中, {\displaystyle \ell } q j {\displaystyle q_{j}} 运动一周期的值。

这样,

代入周期 T i {\displaystyle T_{i}} 的公式,

肯定地, ν i {\displaystyle \nu _{i}} 是广义坐标 q i {\displaystyle q_{i}} 的频率。

假若 q j {\displaystyle q_{j}} 不是循环坐标,则不能将其共轭动量 p j {\displaystyle p_{j}} 从作用量的定义积分内提出来,必须采用另外一个方法计算。从角度的定义,可以察觉角度 w i {\displaystyle w_{i}} 跟广义坐标 q {\displaystyle \mathbf {q} } 、作用量 J {\displaystyle \mathbf {J} } 有关:

保持作用量不变,角度的虚位移 δ w i {\displaystyle \delta w_{i}} 是:

在一个周期性物理系统里,每一个广义坐标 q i {\displaystyle q_{i}} 都有它运动的周期 T i {\displaystyle T_{i}} 。假若,其中有任何广义坐标的周期与别的广义坐标的周期不相同,则称此物理系统为多重周期性物理系统。假若,两个广义坐标的周期不同 T 1 {\displaystyle T_{1}} T 2 {\displaystyle T_{2}} 。在做闭路径积分的时候,就必须使用使用一个新的周期 T {\displaystyle T} ,让闭路径积分能够开始与结束于同一点.假若,两个周期的比例是个有理数,则称这两个周期互相可通约的。设定新周期为

其中, T T 1 {\displaystyle {\frac {T}{T_{1}}}} T T 2 {\displaystyle {\frac {T}{T_{2}}}} m 1 {\displaystyle m_{1}} m 2 {\displaystyle m_{2}} ,都是正值的整数。

同样地,在多重周期性物理系统里,假若,每一个广义坐标的周期与其它的广义坐标的周期都是互相可通约的,则此系统是完全可通约的,称此系统为完全可通约系统。那么,新周期 T {\displaystyle T}

其中, T T i {\displaystyle {\frac {T}{T_{i}}}} m i {\displaystyle m_{i}} ,都是正值的整数。

经过一个周期 T {\displaystyle T} ,角度 w i {\displaystyle w_{i}} 的变化是:

由于作用量 J i {\displaystyle J_{i}} 是个常数,可以将它从积分内提出:

所以,频率是

假若,有任何两个互相不可通约的广义坐标 q i {\displaystyle q_{i}} q j {\displaystyle q_{j}} ,其周期 T i {\displaystyle T_{i}} T j {\displaystyle T_{j}} 的比例是无理数。那么, q i {\displaystyle q_{i}} 不可能与 q j {\displaystyle q_{j}}

相关

  • 康纳德·洛伦茨康拉德·柴卡里阿斯·洛伦兹,FRS(德语:Konrad Zacharias Lorenz,1903年11月7日-1989年2月27日)是一位著名奥地利动物学家、鸟类学家、动物心理学家,也是经典比较行为研究的代表人物
  • 林铣十郎林铣十郎(1876年2月23日-1943年2月4日),日本陆军大将,第33任日本内阁总理大臣(首相)。陆军大学毕业,留学德国。1930年任朝鲜军司令官。九·一八事变时与关东军配合,擅自出动军队,发动
  • 阿拉莫萨县阿拉莫萨县 (Alamosa County, Colorado) 是美国科罗拉多州南部的一个县。面积1,874平方公里。根据美国2000年人口普查,共有人口14,966人。县治阿拉莫萨 (Alamosa)。成立于191
  • 猎豹属Cynailurus Wagner, 1830 Cynofelis Lesson, 1842 Guepar Boitard, 1842 Gueparda Gray, 1843 Guepardus Duvernoy, 1834 Paracinonyx Kretzoi, 1929猎豹属(英语:Acinonyx)为猫
  • 林淮林淮(1441年-?),,字长深,福建承宣布政使司兴化府莆田(今福建省莆田市)人,明朝政治人物。早年出身府学生,福建乡试第六名举人。成化十一年(1475年)乙未科进士第三甲第六十四名。授刑部主事
  • 加藤泉 (画家)加藤泉(かとう いずみ,1969年-),男,日本画家和雕塑家,出生于岛根县,1992年毕业于武藏野美术大学油画系。2004年创作雕塑《无题》。此后4chan网友Moto42以此为原型创作了虚构故事“SC
  • AptioAptio是美商安迈科技(英语:American Megatrends)基于UEFI规范的下一代BIOS固件,将被应用于未来固件可移植性和可扩展性的发展。伴随电子工艺的提升,Aptio将可以在基于各种驱动程
  • 鸿门宴鸿门宴,指前206年(汉元年)十二月在位于故秦都城咸阳郊外的新丰鸿门(今陕西省西安市临潼区新丰镇鸿门堡村)举行的,由当时两位楚将刘邦与项羽进行的一次宴会。此前楚怀王熊心曾与诸
  • 少康中兴少康中兴乃中国史上首个出现“中兴”二字的时代。少康是中国夏朝的第六代天子,起兵杀死了当时篡位的寒浞,复兴夏朝。夏朝第三代天子太康被东方一个诸侯国有穷氏(今山东西部)后羿
  • 李义深李义深(496年-552年),赵郡高邑人,出自赵郡李氏南祖,北魏、东魏与北齐官员。李义深学习经史,有做事的能力,但机心很多,当时的人说:“剑戟森森李义深。”他任官济州征东府功曹参军,加官龙