作用量-角度坐标

✍ dations ◷ 2025-04-04 11:18:35 #经典力学,哈密顿力学,坐标系

在经典力学里,作用量-角度坐标(action-angle coordinate)是一组正则坐标,通常在解析可积分系统 (Integrable system) 时,有很大的用处。应用作用量-角度坐标的方法,不需要先解析运动方程,就能够求得振动或旋转的频率。作用量-角度坐标主要用于完全可分的 哈密顿-亚可比方程(哈密顿量显性地不含时间,也就是说,能量保持恒定)。作用量-角度变数可以用来定义一个环面不变量。因为,保持作用量的不变设定了环的曲面,而角度是环面的另外一个坐标,粒子依照着角度,卷绕于环面。

在量子力学早期,波动力学发展成功之前,玻尔-索末菲量子化条件 (Bohr-Sommerfeld quantization) 是研究量子力学的利器。此条件阐明,作用量必须是普朗克常数常数的整数倍。爱因斯坦对于 Einstein-Brillouin-Keller action quantization 深刻的理解 与 非可积分系统 量子化的困难,都是以 作用量-角度坐标的环面不变量 来表达。

在哈密顿力学里,作用量-角度坐标也可以应用于摄动理论,特别是在决定缓渐不变量。关于一个自由度很小的动力系统的非线形摄动,混沌理论研究的最早的一个结果是 KAM theorem 。这定理阐明,对于微小摄动,环面不变量是稳定的。

作用量-角度坐标,对于户田晶格 (Toda field theory) 的解析,对于 Lax pairs 的定义,更广义地,对于一个系统同光谱 (isospectral) 演化的构想,都占有关键地位。

假设,在一个物理系统里,哈密顿量是保守的,也就是说,哈密顿量 H {\displaystyle {\mathcal {H}}} 不显含时间;

其中, a H {\displaystyle a_{\mathcal {H}}} 是运动常数, q {\displaystyle \mathbf {q} } 是广义坐标, p {\displaystyle \mathbf {p} } 是广义动量。

采用哈密顿特征函数 W ( q ;   P ) {\displaystyle W(\mathbf {q} ;\ \mathbf {P} )} 为正则变换的第二型生成函数。变换方程为

其中, Q {\displaystyle \mathbf {Q} } 是新广义坐标, P {\displaystyle \mathbf {P} } 是新广义动量。

新哈密顿量 K {\displaystyle {\mathcal {K}}} 与旧哈密顿量 H {\displaystyle {\mathcal {H}}} 相等:

新广义动量的哈密顿方程为

所以,新广义动量是常数 a {\displaystyle \mathbf {a} }

假设,这物理系统的哈密顿-亚可比方程 H ( q ,   W q ) = a H {\displaystyle {\mathcal {H}}\left(\mathbf {q} ,\ {\frac {\partial W}{\partial \mathbf {q} }}\right)=a_{\mathcal {H}}} 为完全可分的,则哈密顿特征函数 W ( q ;   P ) {\displaystyle W(\mathbf {q} ;\ \mathbf {P} )} 可以分离为 n {\displaystyle n} 个函数 W i {\displaystyle W_{i}}

哈密顿特征函数与新旧正则坐标的关系是

假若,粒子的运动是周期性运动,最常见的例子如振动或旋转都是周期性运动,则可以设计一个新正则坐标-作用量-角度坐标 ( w ,   J ) {\displaystyle (\mathbf {w} ,\ \mathbf {J} )} 。定义作用量为

这闭路径积分的路径是粒子运动一周期的路径。

由于广义动量 p i {\displaystyle p_{i}} 只跟 q i {\displaystyle q_{i}} a {\displaystyle \mathbf {a} } 有关,经过积分,作用量 J i {\displaystyle J_{i}} 只跟 a {\displaystyle \mathbf {a} } 有关。所以,作用量矢量 J {\displaystyle \mathbf {J} } 只是个常数矢量。哈密顿特征函数可以表达为

虽然是同样的物理量,函数的参数不同,形式也不同。

定义角度 w {\displaystyle \mathbf {w} }

由于所有的广义坐标 q i {\displaystyle q_{i}} 都相互独立,所有的广义动量 p i {\displaystyle p_{i}} 也都相互独立,所以,所有的作用量 J i {\displaystyle J_{i}} 都相互独立,作用量-角度坐标可以正确的用为正则坐标。这样,哈密顿特征函数可以用正则坐标作用量-角度坐标表达为

新哈密顿量 K {\displaystyle {\mathcal {K}}'} 与旧哈密顿量 H {\displaystyle {\mathcal {H}}} 相等:

因为作用量 J i = J i ( a ) {\displaystyle J_{i}=J_{i}(\mathbf {a} )} 只是常数矢量,所以,

新哈密顿量 K = K ( J ) {\displaystyle {\mathcal {K}}'={\mathcal {K}}'(\mathbf {J} )} ,只跟作用量 J {\displaystyle \mathbf {J} } 有关,跟角度 w {\displaystyle \mathbf {w} } 无关。

角度 w i {\displaystyle w_{i}} 随时间的导数 ν i {\displaystyle \nu _{i}} ,可以用哈密顿方程决定:

每一个 J i {\displaystyle J_{i}} 都是常数,所以, ν i ( J ) {\displaystyle \nu _{i}(\mathbf {J} )} 也是常数:

其中, β i {\displaystyle \beta _{i}} 是积分常数。

假设原本广义坐标 q i {\displaystyle q_{i}} 的振荡或旋转的运动周期为 T i {\displaystyle T_{i}} ,则其对应的角度变数 w i {\displaystyle w_{i}} 的改变是 Δ w i = ν i T i {\displaystyle \Delta w_{i}=\nu _{i}T_{i}} 。进一步了解物理量 ν i {\displaystyle \nu _{i}} 的性质,猜想 ν i {\displaystyle \nu _{i}} 与广义坐标 q i {\displaystyle q_{i}} 周期性运动的频率有关。可是,因为角度 w i {\displaystyle w_{i}} 是广义坐标 q {\displaystyle \mathbf {q} } 与作用量 J {\displaystyle \mathbf {J} } 的函数,无法确定前面的猜想。为了证实这论点,计算周期 T i {\displaystyle T_{i}}

新哈密顿量 K ( J ) {\displaystyle {\mathcal {K}}'(\mathbf {J} )} 与旧哈密顿量 H {\displaystyle {\mathcal {H}}} 相等。所以,

假若 q j {\displaystyle q_{j}} 是个循环坐标,那么,其共轭动量 p j {\displaystyle p_{j}} 必是个常数,可以从作用量的定义积分内提出来:

其中, {\displaystyle \ell } q j {\displaystyle q_{j}} 运动一周期的值。

这样,

代入周期 T i {\displaystyle T_{i}} 的公式,

肯定地, ν i {\displaystyle \nu _{i}} 是广义坐标 q i {\displaystyle q_{i}} 的频率。

假若 q j {\displaystyle q_{j}} 不是循环坐标,则不能将其共轭动量 p j {\displaystyle p_{j}} 从作用量的定义积分内提出来,必须采用另外一个方法计算。从角度的定义,可以察觉角度 w i {\displaystyle w_{i}} 跟广义坐标 q {\displaystyle \mathbf {q} } 、作用量 J {\displaystyle \mathbf {J} } 有关:

保持作用量不变,角度的虚位移 δ w i {\displaystyle \delta w_{i}} 是:

在一个周期性物理系统里,每一个广义坐标 q i {\displaystyle q_{i}} 都有它运动的周期 T i {\displaystyle T_{i}} 。假若,其中有任何广义坐标的周期与别的广义坐标的周期不相同,则称此物理系统为多重周期性物理系统。假若,两个广义坐标的周期不同 T 1 {\displaystyle T_{1}} T 2 {\displaystyle T_{2}} 。在做闭路径积分的时候,就必须使用使用一个新的周期 T {\displaystyle T} ,让闭路径积分能够开始与结束于同一点.假若,两个周期的比例是个有理数,则称这两个周期互相可通约的。设定新周期为

其中, T T 1 {\displaystyle {\frac {T}{T_{1}}}} T T 2 {\displaystyle {\frac {T}{T_{2}}}} m 1 {\displaystyle m_{1}} m 2 {\displaystyle m_{2}} ,都是正值的整数。

同样地,在多重周期性物理系统里,假若,每一个广义坐标的周期与其它的广义坐标的周期都是互相可通约的,则此系统是完全可通约的,称此系统为完全可通约系统。那么,新周期 T {\displaystyle T}

其中, T T i {\displaystyle {\frac {T}{T_{i}}}} m i {\displaystyle m_{i}} ,都是正值的整数。

经过一个周期 T {\displaystyle T} ,角度 w i {\displaystyle w_{i}} 的变化是:

由于作用量 J i {\displaystyle J_{i}} 是个常数,可以将它从积分内提出:

所以,频率是

假若,有任何两个互相不可通约的广义坐标 q i {\displaystyle q_{i}} q j {\displaystyle q_{j}} ,其周期 T i {\displaystyle T_{i}} T j {\displaystyle T_{j}} 的比例是无理数。那么, q i {\displaystyle q_{i}} 不可能与 q j {\displaystyle q_{j}}

相关

  • 以物易物以物易物(英语:barter economy)又称物物交换,是有社会契约或明确协议条件下的交换价值模式。与礼物经济自由价值模式相反。用自己拥有的物品或服务与别人交换,以换取别人的物品或
  • 吉维特期吉维特期(英语:Givetian)是泥盆纪的第五个时期,年代大约位于387.7–382.7百万年前。
  • 弘治弘治(1488年至1505年)为中国明朝第九个皇帝明孝宗朱祐樘的年号,前后共十八年。弘治年间,明朝政治清明,经济持续发展,史称弘治中兴。弘治十八年五月明武宗即位沿用。出自《北齐书》
  • 莽原疏林莽原或译稀树莽原、稀树草原(Taíno阿拉瓦克语:sabana),分布于热带地区的又称热带莽原,主要分布于非洲、巴西和澳大利亚的部分地区,草类高大茂密,稀疏的林木散布其间。高温而有
  • 绯红哈佛大学绯红队(英语:Harvard Crimson)是哈佛大学的体育代表队。学校共有42支队伍参加国家大学体育协会(NCAA)第一级的各项赛事,参赛数量位居各校之首。与其他常青藤盟校一样,哈佛
  • 加拿大体育加拿大流行多种不同的体育活动。加拿大的体育运动中最常见的是冰球、曲棍球、加拿大橄榄球、足球、篮球、冰壶和棒球。冰球是加拿大的国球,也是加拿大最受欢迎的体育运动,在国
  • 格里菲斯·J·格里菲斯格里菲斯·詹金斯·格里菲斯(英语:Griffith Jenkins Griffith;1850年1月4日-1919年7月6日),是一位威尔士裔美国企业家和慈善家,捐赠12.20平方公里的土地给洛杉矶市政府而成立格里斐
  • 伊萨·本·阿里·阿勒哈利法伊萨·本·阿里·阿勒哈利法(1848年至1932年)是从1869年开始统治的巴林国王,一直统治到他逝世为止,他的头衔是巴林哈基姆。他是该地区的在位时间最长的君主,统治长达63年。1923年
  • 肖竹芋属肖竹芋属(学名:)是竹芋科下的一个属,为多年生草本植物。分布于热带美洲。本属仅分布于南美洲北部及中美洲。 维基共享资源中与肖竹芋属相关的分类
  • 史弼史弼可以指: