整除

✍ dations ◷ 2025-10-09 19:55:59 #整除
数学中,尤其是在基本计算里,除法可以看成是“乘法的反运算”,也可以理解为“重复的减法”。除法运算的本质就是“把参与运算的除数变为 1 {displaystyle 1} ,得出被除数的值”。例如: 6 ÷ 3 = 2 {displaystyle {{6}div {3}}=2} ,就好像 6 − 3 − 3 = 0 {displaystyle {{{6}-{3}}-{3}}=0} , { 6 − 3 = 3 3 − 3 = 0 {displaystyle {begin{cases}6-3=3\3-3=0end{cases}}} , 6 {displaystyle 6} 被 3 {displaystyle 3} 减了两次后,就变成了 0 {displaystyle 0} 。如果而且 b {displaystyle b} 不等于零,那么其中,a称为商数,b称为除数,c称为被除数。如果除式的商数( a {displaystyle a} )必须是整数,则称为带余除法, a × b {displaystyle atimes b} 与 c {displaystyle c} 相差的数值,称为余数( d {displaystyle d} )。这也意味着在高等数学(包括在科学与工程学中)和计算机编程语言中, c ÷ b {displaystyle cdiv b} 写成 c / b {displaystyle c/b} 。如果我们不需要知道确切值或者留待以后引用,这种形式也常常是称之为分数的最终形式。其中寻找商数的函数为 div {displaystyle operatorname {div} } ,寻找余数的函数则为 mod {displaystyle operatorname {mod} } 。在大部分的非英语语言中, c : b {displaystyle c:b} 代表 c ÷ b {displaystyle cdiv b} 的比,读做c比b; c / b {displaystyle c/b} 则代表 c ÷ b {displaystyle cdiv b} 的比值。用法请参照比例。整除是数学中两个自然数之间的一种关系。自然数 a {displaystyle a} 可以被自然数 b {displaystyle b} 整除,是指 b {displaystyle b} 是 a {displaystyle a} 的约数,且a是b的整数倍数,也就是 a {displaystyle a} 除以 b {displaystyle b} 没有余数。约数判别法可参照整除规则。b ∣ a {displaystyle bmid a} 表示 b {displaystyle b} 整除 a {displaystyle a} ,即 a {displaystyle a} 是 b {displaystyle b} 的倍数, b {displaystyle b} 是 a {displaystyle a} 的因数。15 {displaystyle 15} 可以被 5 {displaystyle 5} 整除,记作 5 ∣ 15 {displaystyle 5mid 15} 。20 {displaystyle 20} 不能被 6 {displaystyle 6} 整除(因为余数为 2 {displaystyle 2} ),记作 6 ∤ 20 {displaystyle 6nmid 20} 。在 ∣ {displaystyle mid } 上加一条斜线即表示不整除。根据乘法表,两个整数可以用长除法(直式除法)笔算。如果被除数有分数部分(或者说时小数点),计算时将小数点带下来就可以;如果除数有小数点,将除数与被除数的小数点同时移位,直到除数没有小数点。算盘也可以做除法运算。长除法俗称“长除”,适用于正式除法、小数除法、多项式除法(即因式分解)等较重视计算过程和商数的除法,过程中兼用了乘法和减法。使用长除法计算 1260257 ÷ 37 = 34061 {displaystyle {{1260257}div {37}}=34061} 的过程可以表示为:短除法是长除法的简化版本。在短除法里,被除数放中央,旁以一L型符号表示除法,被除数左侧为除数,下侧为商,省去了长除法逐层计算的过程。和整数之间的带余除法类似,一元多项式之间也可以进行带余除法。可以证明,设有多项式 A {displaystyle A} 和非零多项式 B {displaystyle B} ,则存在唯一的多项式 Q {displaystyle Q} 和 R {displaystyle R} ,满足:而多项式 R {displaystyle R} 若非零多项式,则其幂次严格小于 B {displaystyle B} 的幂次。作为特例,如果要计算某个多项式 P {displaystyle P} 除以一次多项式 X − a {displaystyle X-a} 得到的余多项式,可以直接将 a {displaystyle a} 代入到多项式 P {displaystyle P} 中。 P {displaystyle P} 除以 X − a {displaystyle X-a} 的余多项式是 P ( a ) {displaystyle P(a)} 。具体的计算可以使用类似直式除法的方式。例如,计算 X 3 − 12 X 2 − 42 {displaystyle X^{3}-12X^{2}-42} 除以 X − 3 {displaystyle X-3} ,列式如下:因此,商式是   X 2 − 9 X − 27 {displaystyle X^{2}-9X-27} ,余式是   − 123 {displaystyle -123} 。通常不定义除以零这种形式。亦即当除以0 或分数的分母为0 时,该式或该数无意义。

相关

  • 亲缘分支分类法支序分类学(英语:Cladistics)又称亲缘分支分类学,是一种生物分类的哲学,其指只依据演化树分支的顺序,而不参考形态上的相似性来排列物种。此一学派的主要贡献者一般认为是德国昆虫
  • 超声心动图超声心动图,是一种心脏超声波检查,它使用标准的超声波技术显示心脏的二维图片。现在最新的超声诊断系统采用三维及时成像。耗时大约15-20分钟,甚至更长。除了产生心血管系统的
  • 诺贝尔奖诺贝尔奖(瑞典语:Nobel priset,挪威语:Nobel prisen,英语:Nobel Prize),是根据瑞典化学家阿尔弗雷德·诺贝尔的遗嘱于1901年开始每年颁发的五个奖项,包括:物理、化学、生理学或医学、
  • 蛔虫病蛔虫病(英语:ascariasis),是一种经线虫动物门的寄生虫蛔虫所导致的疾病。超过85%的感染病例─尤其是蛔虫数目非常少的情况下─是没有症状的。随着蛔虫数目的增加,便可能会出现症
  • 割礼割礼(又名包皮切割),天主教名割损,是一种宗教仪式,通常是指对男孩施行的割礼,方法是把阴茎上的包皮割去。早期的山洞壁画和古埃及坟穴已有关于割礼的描述,中东的不少宗教也有施行割
  • 终端细支气管小支气管是空气由鼻或口到肺的肺气泡之间的通道,而分支下层不再包含软骨或腺体。小支气管是支气管的分支。小支气管具有微丝血管。Template:Lower respiratory system anatom
  • 死语绝迹语言(英语:Extinct language),又称灭绝语言、灭亡语言、死语,指一种已经不再有人以之作为母语的语言。根据估计,每两星期就有一种人类的语言灭亡,变成绝迹语言。但在一些特殊情
  • ④ 北塞浦路斯面积以下资讯是以2011年估计家用电源国家领袖国内生产总值(国际汇率) 以下资讯是以2014年估计立国历史北塞浦路斯土耳其共和国(Kuzey Kıbrıs Türk Cumhuriyeti,缩写为KKTC) 通
  • 三裂动物门三叶动物门(学名:Trilobozoa),又名三裂动物门,是一个已经完全灭绝的动物门,在分类上属辐射对称动物,身体呈特殊的三重辐射对称结构。三叶动物生存的年代非常久远,其化石仅出现于寒武
  • 甲基丙二酸单酰辅酶A差向异构酶甲基丙二酸单酰辅酶A差向异构酶(英语:Methylmalonyl CoA epimerase,亦可简称为甲基丙二酰辅酶A表异构酶)是一种将(S)-甲基丙二酸单酰辅酶A转换为(R)型。Template:Isomerase-stub