转移矩阵

✍ dations ◷ 2025-10-09 22:01:20 #转移矩阵
在数学中,随机矩阵(stochastic matrix)是用来描述一个马尔可夫链的转变的矩阵,亦称为概率矩阵(probability matrix)、转移矩阵(transition matrix)、替代矩阵(substitution matrix)或马尔可夫矩阵(Markov matrix)。它的每一项都是一个表示概率的非负实数。它适用于概率论、统计学和线性代数,也在计算机科学和群体遗传学中使用。 有几种不同的定义和类型随机矩阵:同理,可以定义随机向量(也称为概率向量)为元素为非负实数且和为1的向量。因此,右随机矩阵的每一行(或左随机矩阵的每一列)都是一个随机向量。在英语数学文献中的惯例是用概率的行向量和概率的右随机矩阵,而不用列向量和左随机矩阵,本文遵循此惯例。随机矩阵描述了在一个有限状态空间 S 上的马尔可夫链 X t {displaystyle {boldsymbol {X}}_{t}} 。如果在一个时间步长内从 i {displaystyle i} 到 j {displaystyle j} 移动的概率为 Pr ⁡ ( j | i ) = P i , j {displaystyle operatorname {Pr} (j|i)=P_{i,j}} ,随机矩阵 P 的第 i {displaystyle i} 行,第 j {displaystyle j} 列元素由 P i , j {displaystyle P_{i,j}} 给出,例如,由于从状态 i {displaystyle i} 到下一状态的概率总和必须是 1,这个矩阵是一个右随机矩阵,于是从 i {displaystyle i} 到 j {displaystyle j} 分两步转变的概率由然后由给定的 P {displaystyle P} 的平方矩阵的 ( i , j ) {displaystyle (i,j)} 号元素给出:一般地,在由矩阵 P {displaystyle P} 给出的有限马尔可夫链上从任何状态转移到另一个状态的 k 步转移概率为 P k {displaystyle P^{k}} 。初始分布为一个行向量。平稳概率向量 π {displaystyle {boldsymbol {pi }}} 定义为不随转移矩阵的运用而变化的一个向量;也就是说,它定义为概率矩阵的左特征向量,其特征值为1:佩龙一弗罗宾尼斯定理(英语:Perron–Frobenius theorem)保证了每个随机矩阵都具有这样的向量,而特征值的最大绝对值始终为1。在一般情况下,可能有多个这样的向量。然而,对于具有严格正项的矩阵,该向量是唯一的,并可以观察到对任意 i {displaystyle i} 我们都有以下极限而求出,其中 π j {displaystyle {boldsymbol {pi }}_{j}} 是行向量 π {displaystyle {boldsymbol {pi }}} 的第 j {displaystyle j} 个元素。在其他方面,这表示处在状态 j {displaystyle j} 下的长期概率与初始状态 i {displaystyle i} 是独立的。这两种计算得到相同的稳定向量是遍历定理的一种形式,在各种各样的耗散动力系统广泛成立:该系统随着时间演变到定态。直观地看,随机矩阵表示一个马尔可夫链;对概率分布应用随机矩阵,就是将原始分布的概率质量进行重新分布,同时保持其总质量。如果反复应用此过程,分布就会收敛为马尔可夫链的平稳分布。转移矩阵可用以表示概率(或变化比率),而矩阵相乘的结果可用以预测未来事件发生的概率。设 A {displaystyle mathbf {A} } 、 B {displaystyle mathbf {B} } 为二个n×n阶转移矩阵,则以下亦为转移矩阵:假设你有一个计时器和五个相邻的格子排成一行,零时刻有一只猫在第一个格子中,而一只老鼠在第五个格子中。在计时器增加的时候猫和老鼠都会随机跳到一个相邻的格子中。例如,如果猫在第二个格子,老鼠在第四个,在计时器增加后,猫会出现在第一个格子且老鼠会出现在第五个格子的概率为1/4。如果猫在第一个格子而老鼠在第五个,那么计时器增加后,猫会出现在第二个格子且老鼠会出现在第四个的概率为1。当它们处于同一个格子的时候,猫会吃掉老鼠,游戏结束。随机变量 K 给出了老鼠仍留在游戏中的时间步长。表示这个包含五种位置组合 (猫,鼠) 的状态的游戏的马尔可夫链为:我们使用一个随机矩阵来表示这个系统的转移概率(这个矩阵中的行和列用上面提到的可能状态来索引),无论初始状态是什么,猫最终都会抓到老鼠(概率为1),且极限为稳态 π = (0,0,0,0,1)。要计算随机变量 Y 的长期平均或期望值。对每种状态 Sj 和时间 tk,都有 Yj,k·P(S=Sj,t=tk) 的贡献。生存与否可以视作一个二值变量,Y=1 代表生存状态而 Y=0 代表终止状态。Y=0 的状态不对长期平均有贡献。由于状态 5 是一个吸收态,吸收对时间的分布为离散位相型分布(英语:Discrete phase-type distribution)。假设系统从状态 2 开始,表示为向量 [ 0 , 1 , 0 , 0 , 0 ] {displaystyle } 。老鼠死亡后的状态不会对生存平均产生影响,所以状态五可以忽略。初始状态和转移矩阵可以化简为,以及,其中 I {displaystyle I} 为单位矩阵, 1 {displaystyle mathbf {1} } 表示全为1的列矩阵,进行状态的相加。由于每个状态都占据一个时间步长,老鼠生存时间的期望就是在所有生存状态和时间步长中占据的概率之和,其高阶矩为

相关

  • 职业性职业病是是指企业、事业单位和个体经济组织等用人单位的劳动者在职业活动中,因接触粉尘、放射性物质和其他有毒、有害因素而引起的疾病。这一概念不仅限于生产性质的企业,也包
  • 俄国åæ ‡ï¼š60°N 90°E / 60°N 90°E / 60; 90ä¿„ç½—æ–¯è”邦(俄语:РоÑÑийÑĞºĞ°Ñ Ğ¤ĞµĞ´ĞµÑ
  • 分裂生殖分裂(英语:Fission),又叫裂殖,在生物学中是指一个细胞(或身体、种群或物种)分为两个或多个部分,以及这些部分再生为细胞(身体、种群或物种)。通常是单细胞生物所形的生殖方式。该种生
  • 威廉·S·蒂利特威廉·S·蒂利特(英语:William Smith Tillett,1892年7月10日-1974年4月4日),美国内科医师和微生物学家,纽约大学医学院(英语:New York University School of Medicine)教授,出生于北卡
  • 再处理铀再处理铀是指从乏燃料再处理过程中回收的铀,铀在再处理过程中回收的材料中占很大一部分。法国、英国和日本均有回收再处理铀的商业企业。拥有核武器的国家在生产武器级钚时,亦
  • 病征人体解剖学 - 人体生理学 组织学 - 胚胎学 人体寄生虫学 - 免疫学 病理学 - 病理生理学 细胞学 - 营养学 流行病学 - 药理学 - 毒理学症状(英语:symptom)又称病状,医学术语,在疾
  • 全身型过敏性反应过敏性休克(英语:Anaphylaxis)反应系指一种严重的全身性过敏反应,发病极快且具有致命性。通常会伴随以下症状:起痒疹、舌头或咽喉肿胀、呼吸困难、呕吐、头晕及低血压;以上症状往
  • 字体微调字体微调(英语:hinting, instructing)是使用数学指令调整轮廓字体使其和栅格对齐的过程。
  • 糖磷脂酰肌醇糖磷脂酰肌醇(英语:Glycosylphosphatidylinositol, pronunciation 帮助·信息),或 glycophosphatidylinositol,糖基磷脂酰肌醇,缩写 GPI)是一个短链糖脂,可以连接到蛋白质的C端,作
  • 迈克尔·霍顿迈克尔·霍顿(英语:Michael Houghton,),英国生物化学家,参与开发丙型肝炎测试。霍顿1972年获东英吉利大学学士学位,并于1977年获伦敦大学国王学院生物学博士学位。然后,他在白金汉郡