最速降线问题

✍ dations ◷ 2025-10-07 22:23:38 #曲线,数学问题

最速降线问题,又称最短时间问题、最速落径问题,是探讨在重力作用而忽略摩擦力的情况下,一个质点在一点A以速率为零开始,沿某条曲线,去到一点不高于A的B,该以何种曲线行进才能令所需的时间最短。在部分欧洲语言中,这个问题称为Brachistochrone,即希腊语中的“最短”(brochistos)和“时间”(chronos)。这条线段就是摆线,可以用变分学证明。

1638年,伽利略在《论两种新科学》中以为此线是圆弧。约翰·伯努利参考之前分析过的等时降落轨迹,证明了此线是摆线,并在1696年6月的《博学通报》发表。艾萨克·牛顿、雅各布·伯努利、莱布尼兹和洛必达都得出同一结论,即正确的答案应该是摆线的一段。除了洛必达的解外,其他人的解都在1697年5月的《博学通报》出现。

费马原理说明,两点间光线传播的路径是所需时间最少的路径。约翰·伯努利利用该原理,对此问题进行解决。

运用机械能守恒定律,可以导出在恒定重力场中运动的物体的速度满足

式中y表示物体在竖直方向上下落的距离,g为重力加速度。通过机械能守恒可知,经不同的曲线下落,物体的速度与水平方向的位移无关。
通过假设光在光速v在满足: v = 2 g y {\displaystyle v={\sqrt {2gy}}} 后达到了最大速度,则

整理折射定律式中的各项并平方得到

可以解得对有

代入v和vm的表达式得到

这是一个由直径为的圆所形成的倒过来的摆线的微分方程。

约翰的哥哥雅各布·伯努利说明了如何从二阶微分得到最短时间的情况。一种现代版本的证明如下。
如果我们从最短时间路径发生微小移动,那么形成三角形满足

不变求微分,得到

最后整理得到

最后的部分即二阶微分下距离的改变量与给定的时间的关系。现在考虑下图中的两条相邻路径,中间的水平间隔为。对新旧两条路径,改变量为

对于最短时间的路径,两个时间相等,故得到

因此最短时间的情况为

在垂直平面上,自原点 ( 0 , 0 ) {\displaystyle \left(\,0,\,0\right)} 至目的地 ( x 1 , y 1 ) {\displaystyle \left(\,x_{1},\,y_{1}\right)} 的最速降线具有以下数学形式:

这里的 y {\displaystyle y} 座标轴方向向下,且 y 1 0 {\displaystyle y_{1}\geq 0} θ {\displaystyle \theta } 为此摆线参数表达式的参数,原点处 θ = 0 {\displaystyle \theta =0}

物体自原点沿最速降线滑至 θ = θ 1 {\displaystyle \theta =\theta _{1}} 处所需的时间可由以下积分式给出:

利用 d s = d x 2 + d y 2 {\displaystyle ds={\sqrt {\mathrm {d} x^{2}+\mathrm {d} y^{2}}}} 以及 v = 2 g y {\displaystyle v={\sqrt {2gy}}} ,并以 θ {\displaystyle \theta } 作为参数,整理后得

自此摆线的参数式中易知 y {\displaystyle y} 的最大值为 k 2 {\displaystyle k^{2}} ,此值必须等于摆线的绕转圆直径 2 r {\displaystyle 2r} ,因此

现假设终点与原点直线距离   l   {\displaystyle \ l\ } ,且终点对原点的俯角为 ϕ {\displaystyle \phi } 。利用此摆线的参数式,可知

利用 l {\displaystyle l} 的关系式求出 r {\displaystyle r} ,并代回下滑时间中,得

综合上述,讨论在   l   {\displaystyle \ l\ } 已知的情况下,下滑时间 t {\displaystyle t} 与俯角 ϕ {\displaystyle \phi } 的关系为

相关

  • About.comDotdash.com(中文:阿邦网、前称:The Mining Company、MiningCo.com, Inc.、About, Inc.、About.com),美国的门户网站,创建于1997年4月21日,拥有Very Well、The Balance、Lifewire、
  • 磺胺甲氧哒嗪磺胺甲氧哒嗪是一种磺胺类药物,其INN名称是“Sulfamethoxypyridazine”。该药物可用于治疗由细菌感染引起的疾病等病症。该药物在血液中的半衰期尚不明确。该药物是哒嗪的一
  • 碱性饮食碱性饮食(英语:Alkaline diet)也被称为碱性灰烬饮食(alkaline ash diet)、碱酸饮食(alkaline acid diet)、酸灰烬饮食(acid ash diet)或是酸碱饮食(acid alkaline diet)泛指一类被认为
  • 古杯动物苏联《古生物学原理》 单壁古杯纲 Monocyathea 隔壁古杯纲 Septoidea 曲板古杯纲 Taenioidea 管壁古杯纲 Aphrosalpingidea 欧美国家—沃罗格金 规则古杯纲 Regulares 不规
  • 婆婆纳婆婆纳(学名:Veronica didyma)是一种车前草科植物,也称“双肾草”。一年至二年生草本,有短柔毛。有蓝、白、粉三种颜色。茎自基部分枝,下部匍匐地面。三角状圆形或近圆形的叶子在
  • 农业税农业税指向农业收入单位(组织)和个人征收的一种税种,作为税赋种类和术语,源自《农业税条例》颁布实施以后。中国大陆的农业税以折合征收粮食实物为主,依据为《农业税条例》;由于一
  • 偏磷酸盐偏磷酸盐是具有偏磷酸根(实验式:PO3-)含氧阴离子的盐,其结构由PO4结构单元构成,每个单元与领一个单元共享两个顶角,具体来说有两种类型:偏磷酸盐对应的偏磷酸(HnPnO3n)纯品尚未分离出
  • 跨越-敏化作用敏化作用(英语:Sensitization)是一种非联系性学习的过程,在此过程期间重复的刺激会导致越来越剧烈的反应。除了被重复的刺激本身外,敏化作用常常使得一整类的刺激都会产生更激烈
  • 植物化学植物化学(英语:Phytochemistry)严格地来说是对植物化学成分的研究。这些化合物取自植物。在更狭义的层面上,这个术语常被用于描述存在于植物中的大量的多种次级代谢化合物(次级
  • 数字物理学数字物理学(Digital physics)、或计算宇宙学(Computational universe),是一个理论,指宇宙可以用信息来代表,亦可以被计算。宇宙可能只是是疑似的电脑程序,或数字模拟物。数字物理学