随机博弈

✍ dations ◷ 2025-10-12 04:12:09 #随机博弈

随机博弈(英语:stochastic game),或称随机赛局、随机对局,在博弈论中是一类由一个或多个参与者所进行的、具有状态概率转移的动态博弈,由劳埃德·夏普利(Lloyd Shapley)于20世纪50年代初期提出。

这类博弈由一系列阶段组成。在博弈中每一阶段的起始,博弈处于某种特定状态。每一参与者选择某种行动,然后会获得取决于当前状态和所选择行动的收益。之后,博弈发展到下一阶段,处于一个新的随机状态,这一随机状态的分布取决于先前状态和各位参与者选择的行动。在新状态中重复上述过程,然后博弈继续进行有限或无限个数的阶段。一个参与者得到的总收益常用各阶段收益的贴现和,或是各阶段收益平均值的下极限来计算。

随机博弈的组成部分有:有限参与者集 I {\displaystyle I} ;状态空间 M {\displaystyle M} (可以是有限集,也可以是可测空间 ( M , A ) {\displaystyle (M,{\mathcal {A}})} );对于每一参与者 i I {\displaystyle i\in I} ,存在行动集 S i {\displaystyle S^{i}\,} (可以是有限集,也可以是可测空间 ( S i , S i ) {\displaystyle (S^{i},{\mathcal {S}}^{i})} ); P {\displaystyle P} M × S {\displaystyle M\times S} M {\displaystyle M} 的转移概率,其中 S = × i I S i {\displaystyle S=\times _{i\in I}S^{i}} 是行动组合, P ( A m , s ) {\displaystyle P(A\mid m,s)} 是下一状态处于 A {\displaystyle A} 中的概率,而 A {\displaystyle A} 给定了当前状态 m {\displaystyle m} 和当前行动组合 s {\displaystyle s} ;从 M × S {\displaystyle M\times S} R I {\displaystyle R^{I}\,} 的收益函数 g {\displaystyle g} ,其中 g {\displaystyle g} 的第 i {\displaystyle i} 个坐标 g i {\displaystyle g^{i}\,} 是参与者 i {\displaystyle i} 的收益,而 g i {\displaystyle g^{i}\,} 是状态 m {\displaystyle m} 和行动组合 s {\displaystyle s} 的函数。

博弈以某个初始状态 m 1 {\displaystyle m_{1}} 开始。在阶段 t {\displaystyle t} 中,参与者最先观测到 m t {\displaystyle m_{t}} ,同时选择行动 s t i S i {\displaystyle s_{t}^{i}\in S^{i}} ,然后观测到行动组合 s t = ( s t i ) i {\displaystyle s_{t}=(s_{t}^{i})_{i}} ,然后以概率 P ( m t , s t ) {\displaystyle P(\cdot \mid m_{t},s_{t})} 自然选择 m t + 1 {\displaystyle m_{t+1}} 。一次随机博弈 m 1 , s 1 , , m t , s t , {\displaystyle m_{1},s_{1},\ldots ,m_{t},s_{t},\ldots } 定义了一个收益流 g 1 , g 2 , {\displaystyle g_{1},g_{2},\ldots } ,其中 g t = g ( m t , s t ) {\displaystyle g_{t}=g(m_{t},s_{t})\,}

下面给出随机博弈的一个例子:

当前有任意个装着球的桶,每个桶中球的数目也是任意的,两位参与者轮流从中取出球,且需要遵守如下规则:

贴现因子为 λ {\displaystyle \lambda } 0 < λ 1 {\displaystyle 0<\lambda \leq 1} )的贴现博弈 Γ λ {\displaystyle \Gamma _{\lambda }} 中,参与者 i {\displaystyle i} 的收益是 λ t = 1 ( 1 λ ) t 1 g t i {\displaystyle \lambda \sum _{t=1}^{\infty }(1-\lambda )^{t-1}g_{t}^{i}} n {\displaystyle n} 阶段博弈中,参与者 i {\displaystyle i} 的收益是 g ¯ n i := 1 n t = 1 n g t i {\displaystyle {\bar {g}}_{n}^{i}:={\frac {1}{n}}\sum _{t=1}^{n}g_{t}^{i}}

若存在有限多个状态和行动的二人零和博弈 Γ n {\displaystyle \Gamma _{n}} (各自是 Γ λ {\displaystyle \Gamma _{\lambda }} )的值为 v n ( m 1 ) {\displaystyle v_{n}(m_{1})} (各自是 v λ ( m 1 ) {\displaystyle v_{\lambda }(m_{1})} ),则 v n ( m 1 ) {\displaystyle v_{n}(m_{1})} n {\displaystyle n} 趋于无穷时收敛到一个极限,且 v λ ( m 1 ) {\displaystyle v_{\lambda }(m_{1})} λ {\displaystyle \lambda } 趋于 0 {\displaystyle 0} 时收敛到相同的极限。这一结论已被杜鲁门·彪利(Truman Bewley)和艾朗·克尔伯格(Elon Kohlberg)于1976年证明。

非贴现博弈 Γ {\displaystyle \Gamma _{\infty }} 中,参与者 i {\displaystyle i} 的收益是各阶段收益平均值的极限。在定义二人零和博弈 Γ {\displaystyle \Gamma _{\infty }} 的值与非零和博弈 Γ {\displaystyle \Gamma _{\infty }} 的均衡收益之前需要注意一些事情:若对于每一 ε > 0 {\displaystyle \varepsilon >0} 都有正整数 N {\displaystyle N} 、参与者1的策略 σ ε {\displaystyle \sigma _{\varepsilon }} 和参与者2的策略 τ ε {\displaystyle \tau _{\varepsilon }} ,二人零和随机博弈 Γ {\displaystyle \Gamma _{\infty }} 的一致值(uniform value) v {\displaystyle v_{\infty }} 存在,这样对于每一 σ {\displaystyle \sigma } τ {\displaystyle \tau } 和每一 n N {\displaystyle n\geq N} ,博弈中由 σ ε {\displaystyle \sigma _{\varepsilon }} τ {\displaystyle \tau } 定义的概率的 g ¯ n i {\displaystyle {\bar {g}}_{n}^{i}} 期望至少为 v ε {\displaystyle v_{\infty }-\varepsilon } ,由 σ {\displaystyle \sigma } τ ε {\displaystyle \tau _{\varepsilon }} 定义的概率的 g ¯ n i {\displaystyle {\bar {g}}_{n}^{i}} 期望至多为 v + ε {\displaystyle v_{\infty }+\varepsilon } 。让·弗朗索瓦·梅顿斯(Jean Francois Mertens)和亚伯拉罕·奈曼(Abraham Neyman)于1981年证明二人零和随机博弈具有一致值。

若参与者数量有限且行动集和状态集有限,则有限阶段随机博弈总有纳什均衡,对于总收益是贴现和的无限多阶段随机博弈也是如此。尼古拉斯·维勒(Nicolas Vieille)已经证明当总收益是各阶段收益平均值的下极限时,所有具有有限状态和行动空间的二人随机博弈都有近似纳什均衡。不过,当参与者多于2名时,随机博弈是否存在这类均衡仍是一个极具挑战性的开放性问题。

随机博弈在经济学、演化生物学和计算机网络中都有应用。事实上,随机博弈是重复博弈这类每一阶段都处于相同状态的博弈的一般化形式。

有关随机博弈的最全面的参考书籍是奈曼和索林编著的文集。菲拉尔和乌瑞兹所著的书籍更为基础,书中提供了马尔可夫决策过程(MDP)和二人随机博弈理论的严密的统一处理方法。他们创造了Competitive MDPs这一术语来概括一人和二人随机博弈。

相关

  • 南半球南半球(英语:Southern Hemisphere)是指赤道以南的半个地球。南半球主要包括的地区有亚洲印度尼西亚南部、非洲中部及南部、大洋洲绝大部分、南美洲大部分、南极洲全部。在南半
  • 磷的同位素磷(原子量:30.973762(2))共有23个同位素,其中31P是稳定的,其他都具有放射性。30P是人类获得的第一种人工放射性同位素。备注:画上#号的数据代表没有经过实验的证明,只是理论推测而
  • 瑞士阿尔卑斯山脉瑞士阿尔卑斯山脉是瑞士的山脉,位于该国中部和东南部,占全国面积约62.5%,是阿尔卑斯山脉的一部分,平均海拔高度约1,700米,最高点海拔高度4,634米。坐标:46°33′33″N 8°33′41″
  • 碘酊碘酊又称碘酒,是一种常用的消毒液。 碘酊通常由2%-7%的碘单质与碘化钾或碘化钠溶于酒精和水的混合溶液组成,最早在1908年由安东尼奥·格鲁斯奇用于手术前皮肤消毒。与卢戈氏碘
  • 主要宗教世界宗教人口比例(2010年)世界主要宗教在20世纪根据比较宗教学的研究,依照其基本哲学观念和神学范畴来分类,但对于如何划分宗教信仰人群,尚有许多问题没有完全解决,包括:虽然基督宗
  • 日本传统色系日本传统色系,指的是日本古典文学里经常采用颜色。这些颜色常被用于和服或其他日本传统艺术和手工艺中。
  • 旧金山纪事报《旧金山纪事报》(英语:San Francisco Chronicle,又称《旧金山新闻》)是北加利福尼亚地区发行量最大的报纸,同时也是美国发行量最大的报纸之一,订户主要集中在旧金山湾区,但该报发
  • 皇家天文台格林尼治皇家天文台(Royal Observatory, Greenwich),旧称皇家格林尼治天文台(Royal Greenwich Observatory,简称RGO),是英国国王查理二世于1675年在伦敦格林尼治建造的一个综合性天
  • 阿根廷国家足球队捷克斯洛伐克 6–1 阿根廷 (瑞典赫尔辛堡;1958年6月15日) 玻利维亚 6–1 阿根廷(玻利维亚拉巴斯;2009年4月1日)阿根廷国家足球队(西班牙语:Selección de fútbol de Argentina),是阿
  • 长浏高速公路长浏高速是湖南省的一条高速公路,原省高速编号S20,根据最新的命名编号规则,现属于杭长高速公路的一部分,于2012年12月23日全线通车。长永高速公路是长浏高速的的一部分。浏洪高