首页 >
类
✍ dations ◷ 2025-10-08 15:49:25 #类
在集合论及其数学应用中,类是集合(或其他数学物件)的搜集(collection),可以依所有成员所共享的性质被无歧定义。有些类是集合(例如由所有偶数构成的类),但有些则不是(如所有序数所构成的类或所有集合所构成的类)。一个不是集合的类被称之为真类。一个是集合的类被称为“小类”。在数学里,有许多物件对集合而言太大,而必须以类来描述,像是大的范畴和超实数的类体之类等。要证明一给定“事物”为一真类,一般的做法是证明此一“事物”至少有着如序数一般多的元素。有关此一证明的例子,请参见完全自由格(英语:Free_lattice#The_complete_free_lattice)。真类不能是一个集合或者是一个类的元素,而且不受ZF集合论中的公理所限制;因此避免掉了许多朴素集合论中的悖论。反而,这些悖论成了证明某一个类是否为真类的方法之一。例如,罗素悖论可以证明由所有不包含集合自身的集合所构成的类是一个真类,而布拉利-福尔蒂悖论则可证明所有序数所构成的类是一个真类。标准的ZF集合论公理不会论及到类;而在元语言中,类只作为逻辑公式的等价类而存在。冯诺伊曼-博内斯-哥德尔集合论则采取了另一种方式;类在此一理论中是基础的物件,而集合则被定义为可以是其他某些类的元素的类。真类,则为不可以是其他任何类的元素的类。在其他集合论如新基础集合论或半集合的理论中,“真类”的概念依然是有意义的(不是任一堆事物都会是集合),但对集合特质的认定并非依据其大小。例如,所有包含全集的集合论都会有个是集合的子类的真类。“类”这一词有时会和“集合”同义,最为人知的是“等价类”这一术语。这种用法是因为从前对类和集合不如现今一样地区别的缘故。许多19世纪之前对“类”的讨论提及的实际上是集合,又或者会是个更为模糊的概念。
相关
- 细菌形态分类细菌可以按照由光学显微镜观察到的形态和聚集方式分类。细菌的结构简单,几乎所有细菌按照上述标准都可以被归入球菌、杆菌与螺旋菌或弧菌之列。其中,杆菌最为常见,球菌次之。细
- N Engl J Med《新英格兰医学杂志》(英语:The New England Journal of Medicine;简称 NEJM)是由美国麻省医学协会(英语:Massachusetts Medical Society)所出版的同行评审性质之医学期刊。它也是
- 太平洋沿岸地区美国太平洋沿岸地区是一块由美国的人口调查局所正式定义的九块地理区域之一。此区域包括五个州:阿拉斯加州、加利福尼亚州、夏威夷州、俄勒冈州、以及华盛顿州等,而这五州都濒
- 根西根西岛(英语:Guernsey),译作根西或耿西,是英国的王权属地之一,位于英吉利海峡靠近法国海岸线的海峡群岛之中,同泽西外各岛岛组成了“根西行政区”(Bailiwick of Guernsey),首府为圣彼
- 希腊字母希腊字母源自腓尼基字母。腓尼基字母只有辅音,从右向左写。希腊语是首个拥有元音字母的字母系统。因为希腊人的书写工具是蜡板,有时前一行从右向左写完后顺势就从左向右写,变成
- Oath威讯媒体公司(英语:Verizon Media),旧名Oath,是一家美国的网络媒体公司,为威讯通信(Verizon Communications)旗下子公司,也是AOL和Yahoo网络事业部门所属的母公司。威讯通信于2015年5
- Netscape 6Netscape 6是网景通信的跨平台网络包,因为Netscape 5实质上被废弃,所以6是承接之前的网景通信家族4.8版。此版本和之后的Netscape 7单纯是修改自Mozilla Suite。整个包包含Nav
- 飞蚊症飞蚊症正式名称为玻璃体混沌或玻璃体浮游物,又称云雾移睛。是一种因投入眼睛的光线将浮游在玻璃体的混浊物投影在视网膜上,而在视野中看到物体漂浮的现象。这些玻璃体浮游物在
- 水俣病水俣病(日语:水俣病),为公害病的一种,成因为汞中毒。1956年左右于熊本县水俣市附近发生,经确认后依地得名。不久,于新潟县发现的新公害病亦称为水俣病。其区别为:前者称熊本水俣病;后
- 尔雅《尔雅》乃中国最早的一部训诂书,也是世界上现存最早的的单语言词典。至今《尔雅》仍是后代考证古代词语时重要的一部著作。《尔雅》原本只是纯粹的一部词典,与儒家并无关系,但