首页 >
反比
✍ dations ◷ 2025-10-07 17:13:43 #反比
在数学中,比例是两个非零数量
y
{displaystyle y}
与
x
{displaystyle x}
之间的比较关系,记为
y
:
x
(
x
,
y
∈
R
)
{displaystyle y:x;(x,yin mathbb {R} )}
,在计算时则更常写为
y
x
{displaystyle {frac {y}{x}}}
或
y
/
x
{displaystyle y/x}
。若两个变量的关系符合其中一个量是另一个量乘以一个常数(
y
=
k
x
{displaystyle y=kx}
),或等价地表达为两变数之比率为一个常数(称为比值,
y
/
x
=
k
{displaystyle y/x=k}
),则称两者是成比例的。如果
y
{displaystyle y}
与
x
{displaystyle x}
是可通约的,亦即它们之间存在一个公测量(common measure)
m
(
m
∈
R
)
{displaystyle m;(min mathbb {R} )}
使得
y
=
m
p
,
x
=
m
q
(
p
,
q
∈
Z
)
{displaystyle y=mp,x=mq;(p,qin mathbb {Z} )}
,
y
:
x
{displaystyle y:x}
就相等于两个整数的比:
y
:
x
=
m
p
:
m
q
=
p
:
q
{displaystyle y:x=mp:mq=p:q}
,那么
y
:
x
{displaystyle y:x}
就称为可通约比(commensurable ratio),
p
q
{displaystyle {frac {p}{q}}}
称为一个分数,其比值称为有理数;否则,如果不存在一个公测量,
y
:
x
{displaystyle y:x}
就称为不可通约比(incommensurable ratio),其比值称为无理数,亦即无法表达为分数的数。两个比例之间也可以互相比较。如果两个比例相等,亦即,它们的比值相同,这个相等关系称为一个等比关系,例如,
y
:
x
=
u
:
o
{displaystyle y:x=u:o}
是一个等比关系,其中
x
u
=
y
o
{displaystyle xu=yo}
。特别是,如果第二项等于第三项,例如
y
:
x
=
x
:
z
{displaystyle y:x=x:z}
,那么
x
2
=
y
z
→
x
=
y
z
{displaystyle x^{2}=yzrightarrow x={sqrt {yz}}}
,
x
{displaystyle x}
称为
y
{displaystyle y}
与
z
{displaystyle z}
的几何平均数(geometric mean)。若存在一非零常数
k
{displaystyle k}
使则称变量
y
{displaystyle y}
与变量
x
{displaystyle x}
成比例(有时也称为成正比)。当
x
{displaystyle x}
和
y
{displaystyle y}
成正比关系,表示当
x
{displaystyle x}
变为原来
k
{displaystyle k}
倍时,
y
{displaystyle y}
也会变为原来的
k
{displaystyle k}
倍。该关系通常用
∝
{displaystyle propto }
(U+221D)表示为:并称该常数比率为比例常数或比例关系中的比例恒量。在日常生活中,正比这个词的使用并不严格局限于线性函数,一般来说,一个变量随着另一个变量的增大/缩小而相应地增大/缩小,近似地满足线性关系的时候,我们可以说这两个变量成正比。现代数学对于比例的用法并没有严格限制,例如,在一个班级里面,我们可以说:“男孩与女孩的比例是2比1”。然而,在古希腊数学中,由于比例是用来表示倍数关系,所以必须是相同种类的数量才能构成比例,例如,欧几里得在《几何原本》第五册中如此定义比例:
.mw-parser-output .templatequote{margin-top:0;overflow:hidden}.mw-parser-output .templatequote .templatequotecite{line-height:1em;text-align:left;padding-left:2em;margin-top:0}.mw-parser-output .templatequote .templatequotecite cite{font-size:small}λόγος ἐστὶ δύο μεγεθῶν ὁμογενῶν ἡ κατὰ πηλικότητά ποια σχέσις.A ratio is a sort of relation in respect of size between two magnitudes of the same kind.比例是两个同类数量之间的大小关系。阿基米德使用这个定义来叙述均匀运动(uniform motion)的等比关系:在一个均匀运动中,两段距离的比例相等于它们所需时间的比例。阿基米德所要描述的,就是匀速运动,但是古希腊数学并不接受距离与时间的比例(亦即速率),因为它们是不一样的数量,所以他没有办法直接说:“均匀运动就是每一点上的速率皆相等”。当采用古希腊的比例论来叙述时,必须取两段距离
L
1
{displaystyle L_{1}}
与
L
2
{displaystyle L_{2}}
以及所需时间
T
1
{displaystyle T_{1}}
与
T
2
{displaystyle T_{2}}
,均匀运动(匀速运动)就是
L
1
:
L
2
=
T
1
:
T
2
{displaystyle L_{1}:L_{2}=T_{1}:T_{2}}
。因为等价于因此可推出,若
y
{displaystyle y}
与
x
{displaystyle x}
之间存在正比关系,则
x
{displaystyle x}
与
y
{displaystyle y}
之间存在正比关系。y
{displaystyle y}
与
x
{displaystyle x}
的正比关系也可以被解读为一条在二维直角坐标系穿过原点的直线,其斜率为比例常数。比例关系中,位于两端的两数之积等于位于中间的两数之积:在上面定义中,我们说有时称两个成比例的变量成正比例,这是为了和反比例关系相对应。如果两变量中,一个变量和另外一个变量的倒数成正比,或等价地,若这两变量的乘积是一个常数,则称这两个变量是成反比例(或相反地变化)的。从而可继续推出,若存在一非零常数
k
{displaystyle k}
使则变量
y
{displaystyle y}
和变量
x
{displaystyle x}
成反比。反比例关系的概念基本上说明的是这样一种关系,即当一个变量的值变大时,另一变量的值相应变小,而两者之积总是保持为一常数(即比例常数)。举例来说,运动中的车辆走完一段路程所花费的时间是和这辆车运动的速度成反比的;在地上挖个坑所花的时间也(大致地)和雇来挖坑的人数成反比的。在笛卡尔坐标平面上,两个具有反比例关系的变量的图形是一对双曲线。该图线上的每一点的 X 和 Y 坐标值之积总是等于比例常数
k
{displaystyle k}
。由于
k
{displaystyle k}
非零,所以图线不会与坐标轴相交若变量
y
{displaystyle y}
与变量
x
{displaystyle x}
的指数函数成正比,即:若存在非零常数
k
{displaystyle k}
使则称
y
{displaystyle y}
与
x
{displaystyle x}
成指数比例。类似地,若变量
y
{displaystyle y}
与变量
x
{displaystyle x}
的对数函数成正比,即:若存在非零常数
k
{displaystyle k}
使则称
y
{displaystyle y}
与
x
{displaystyle x}
成对数比例。用实验方法确定两个物理量是否具有正比关系,可采用这样的办法,即进行多次测量并在笛卡尔坐标系中将这些测量结果用多个点来表示,而绘制出这些点的分布图形;如果所有点完全(或接近)地落在一条穿过原点
(
0
,
0
)
{displaystyle (0,0)}
的直线上,则这两个变量(很有可能)具有比例常数等于该直线斜率的正比关系。
相关
- 牛羊肝吸虫牛羊肝吸虫(学名:Fasciola hepatica)是一种大型的吸虫,由于世代的循环需要透过淡水的螺以及水生植物才能完成,主要分布在畜牧业发达的国家,可寄生在牛、羊及其它多种草食性哺乳动
- 克罗地亚语克罗地亚语(Hrvatski)是塞尔维亚-克罗地亚语的一种标准化形式,由克罗地亚族使用,是克罗地亚的官方语言,波黑和伏伊伏丁那的官方语言之一。在南斯拉夫社会主义联邦共和国时期,与塞
- 六书陶文 ‧ 甲骨文 ‧ 金文 ‧ 古文 ‧ 石鼓文籀文 ‧ 鸟虫书 ‧ 篆书(大篆 ‧ 小篆)隶书 ‧ 楷书 ‧ 行书 ‧ 草书漆书 ‧ 书法 ‧ 飞白书笔画 ‧
- 蛋白质粒蛋白质体(英语:Proteinoplast, proteoplast, aleuroplast, aleuronaplast),又称造蛋白体、蛋白体,是植物细胞中的一种质粒体,又可细分为白色体的一种,主要功能为储存结晶形式的蛋白
- 扩充中心法则分子生物学的中心法则(英语:The central dogma of molecular biology,又译分子生物学的中心教条),首先由佛朗西斯·克里克于1958年提出,并于1970年在《自然》上的一篇文章中重申:中
- Journal of the American Chemical Society《美国化学会志》(英语:Journal of the American Chemical Society,或译美国化学会期刊、美国化学学会期刊),常用缩写为J. Am. Chem. Soc.和JACS,是美国化学学会发行的学术期刊,于1
- 伍德兰期疏林时代(Woodland Period)是一个专门名称,指称美国中东部地区前哥伦布时期的古代印第安人文化位于公元前11世纪至公元11世纪之间的阶段。北美洲中东部是一片广阔平坦的大平原,
- 外交部外交部是一个主权国家负责国家对外事务的专门政府机关,其部门主官称作外交部长(外长)或外交大臣(外相),为内阁成员之一,且通常被视为仅次于最高行政长官(总统制国家为总统,内阁制国家
- 鄂毕河鄂毕河(俄语:Обь)位于西伯利亚西部,是世界上的一条长河。鄂毕河位于西伯利亚三大河最西侧,注入北冰洋鄂毕湾,鄂毕湾也是世界最长的河口。鄂毕河在当地不同民族中有不同的名字,奥
- 伦敦自治市伦敦自治市镇(英语:London borough),又译为伦敦区,是大伦敦以下的行政地区,共32个。靠内的12个加上伦敦市(City of London)统称内伦敦,靠外的20个统称外伦敦。虽然地理位置在大伦敦内