杠杆原理

✍ dations ◷ 2025-10-06 10:42:58 #杠杆原理
在力学里,典型的杠杆(lever)是置放连结在一个支撑点上的硬棒,这硬棒可以绕着支撑点旋转。当杠杆静力平衡时,其动力乘以动力臂等于阻力乘以阻力臂,可以透过改变动力臂或阻力臂长度,使输入力放大或缩小,有着相当实用的功能,古希腊人将杠杆归类为简单机械。早在旧石器时代晚期,古人就知道使用杠杆的原理来制作投枪器。 考古学者认为,在古埃及4500多年前的金字塔时期,工人使用杠杆来移动、抬举重量超过100英吨的方尖碑。 中国战国时期,墨子在所著作的《墨子》一书中,提到应用杠杆的概念。大约在公元前330年,亚里斯多德在著作《机械问题》(《Mechanical Problems》)里,对于杠杆有详细的论述,并且基本而言使用虚功的现代概念推导出杠杆原理。公元前3世纪,古希腊科学家阿基米德在著作《论平面图形的平衡》里用几何方法推导出杠杆原理,并且宣称:“给我一个支点,我就可以撬动整个地球。”由于杠杆内部有一点为固定点,杠杆只能绕着这固定点做旋转运动。相对于这一点,杠杆不能做平移运动。理想杠杆不会耗散或储存能量,也就是说,支点与硬棒之间不会出现任何摩擦损耗,硬棒是一种刚体,不会被弯曲,发生形变。注意到硬棒不一定是直棒。弯曲的硬棒形成的杠杆称为“曲杠杆”。对于理想杠杆案例,输入杠杆的功率等于杠杆输出的功率。输出力与输入力之间的比率,等于这两个作用力分别与支点之间垂直距离的反比率,称这相等式为“杠杆原理”,以方程表达:或者,定义力矩 M {displaystyle M} 为其中, F {displaystyle F} 是作用力, D {displaystyle D} 是作用力与支点之间的垂直距离。则输入力矩等于输出力矩:杠杆原理表明,当静力平衡时,动力乘以动力臂等于阻力乘以阻力臂:靠着比较动力臂、阻力臂的长度,可以将杠杆分为三类:另外一种分类法式依照动力点、阻力点、支点在杠杆的相对位置来分类。第一类杠杆的动力点、阻力点分别在支点的两边。例如,铁撬、剪刀、跷跷板、天平、尖嘴钳。第二类杠杆的动力点、支点分别在阻力点的两边。例如,独轮车、胡桃夹子。这是一种省力杠杆,可以施加较小的力量来移动较重的物体,但是动力的位移较长。第三类杠杆的阻力点、支点分别在动力点的两边。例如,镊子、扫把。这是一种费力杠杆,可以节省动力的位移。杠杆是可以绕着支点旋转的硬棒。当外力作用于杠杆内部任意位置时,杠杆的响应是其操作机制;假若外力的作用点是支点,则杠杆不会出现任何响应。假设杠杆不会耗散或储存能量,则杠杆的输入功率必等于输出功率。当杠杆绕着支点呈匀角速度旋转运动时,离支点越远,则移动速度越快,离支点越近,则移动速度越慢,由于功率等于作用力乘以速度,离支点越远,则作用力越小,离支点越近,则作用力越大。机械利益是阻力与动力之间的比率,或输出力与输入力之间的比率。假设动力臂 D 1 {displaystyle D_{1}} 、阻力臂 D 2 {displaystyle D_{2}} 分别为动力点、阻力点与支点之间的距离,动力 F 1 {displaystyle F_{1}} 、阻力 F 2 {displaystyle F_{2}} 分别作用于动力点、阻力点。则机械利益 M A {displaystyle MA} 为通常在学习杠杆的初级理论时,会聚焦于输入力和输出力由于虚位移而做的虚功。虚位移可以定义为物体的移动速度乘以虚时间。这样定义导致计算的物理量是功率,而不是功。这种方法有一个实在优点:在研究机械工程学或机构学时,功率是主要计算的物理量。使用这种方法来对杠杆做静力分析,就如同对于车子的传动系统,或机械手臂做静力分析,它们的机械利益的计算方式完全一样。复式杠杆(compound lever)是一组耦合在一起的杠杆,前一个杠杆的阻力会紧接地成为后一个杠杆的动力。几乎所有的磅秤都会应用到某种复式杠杆机制。其它常见例子包括指甲剪、钢琴键盘。1743年,英国伯明翰发明家约翰·外艾特(英语:John Wyatt)在设计计重秤时,贡献出复式杠杆的点子。他设计的计重秤一共使用了四个杠杆来传输负载。负:衡木加重焉而不挠,极胜重也。右校交绳,无加焉而挠,极不胜重也。衡加重于其一旁必捶,权重相若也。相衡则本短标长,两加焉重相若,则标必下,标得权也。挈:有力也,引无力也。不正所挈之止于施也,绳制挈之也,若以锥刺之。挈,长重者下,短轻者上,上者愈得,下下者愈亡。绳直权重相若,则正矣。收,上者愈丧,下者愈得,上者权中尽,则遂。

相关

  • 脑神经脑神经(Cranial nerves)属于周围神经系统,区别于由脊髓发出的脊神经。它们是直接由脑发出的。在人类中,传统上认为一共有12对脑神经,其中有10对分布于头面部。除第1及第2对外,其余
  • 苹果酸苹果酸即2-羟基丁二酸,是一个二羧酸,化学式为C4H6O5。分子中含有一个不对称碳原子,因此有两种旋光异构体和一种外消旋体。它是三羧酸循环的中间物之一,由反丁烯二酸水合生成,继续
  • 密克罗尼西亚密克罗尼西亚(Micronesia)是太平洋三大岛群之一,希腊语字根为“小岛”之义,位于西太平洋,在南纬4°-北纬22°、东经130°-180°之间;有2500个以上的岛屿,绝大部分在赤道以北,东西延
  • 布鲁塞尔– 欧盟(灰色及浅绿色)– 比利时(灰色)布鲁塞尔(法语:Bruxelles;荷兰语:Brussel)是比利时的首都和最大的城市,也是欧洲联盟的主要行政机构所在地。布鲁塞尔市位于布鲁塞尔-首都大区
  • 塞浦路斯音节文字塞浦路斯音节文字(Cypriot syllabary)是铁器时代的塞浦路斯使用的音节文字,从大约公元前11世纪到前4世纪,此后它被希腊字母所替代。这个变革的发起者是萨拉米斯国王埃瓦戈拉斯。
  • 撒拉森人撒拉森人,或译萨拉森人,系源自阿拉伯文的“东方人(شرقيين‎、sharqiyyin)”,转写成希腊文作Σαρακηνοί、Sarakēnoí,拉丁文作Saracen(撒拉坚),中文则受英语化或晚期拉
  • 日本内阁总理大臣政治主题内阁总理大臣(日语:内閣総理大臣〔內閣總理大臣〕/ないかくそうりだいじん Naikaku sōri daijin */?)是日本最高行政首长,主要职责为领导内阁的运作,主持内阁会议(日语:
  • 牛痘病毒牛痘(英语:cowpox)是发生在牛身上的一种传染病,它的症状通常是在母牛的乳房部位出现局部溃疡。牛痘由牛痘病毒引发,而该病毒是天花病毒的近亲。如果挤奶工的皮肤上有伤口,该病会透
  • 氰化钾氰化钾(化学式:KCN),俗称山埃钾,是氰化氢的钾盐。在一般环境下氰化钾是一种呈无色或白色、有杏仁味、外观与糖相似并且易溶于水的固体。尽管有剧毒,由于是能与元素金组成可溶化合
  • 宾尼迪·路斯特宾尼迪·路斯特(英语:Benedict Lust,1872年2月3日-1945年9月5日),生于德国 Michelbach,临近黑森林地区,他是自然医学的先驱人物,常被人称为美国自然医学之父。宾尼迪·路斯特年轻时曾