系统识别

✍ dations ◷ 2025-07-26 11:06:25 #经典控制,动力系统,系统工程,系统理论

系统识别(system identification)Note a是利用统计学,从量测到的数据来建构动力系统数学模型的方法。系统识别也包括最佳(英语:optimal design)试验设计,利用回归分析回归分析有效的产生有足够资讯的数据,以及模型降阶(英语:Model order reduction)等。

此条目中的动态数学模型(dynamical mathematical model)是用数学方式来描述系统或是过程的动态特性,可能是时域特性或是频域特性,例如:

系统识别有许多可能的应用,其中一个是控制理论。系统识别是现在资料驱动控制系统(英语:Data-driven control system)的基础,其中系统识别整合到控制器设计中,也建立控制器最佳程度的的证明基础。

系统识别技巧可以同时使用输入及输出资料(例如特征系统实现算法(英语:eigensystem realization algorithm)),也可以只使用输出资料(例如频域分解(英语:frequency domain decomposition))。一般而言同时使用输入及输出资料会有准确的结果,不过有时无法得到输入的资料。

系统识别的好坏会和输入的好坏有关,而后者是系统工程师可部分控制的范围。因此,系统工程师已长期应用试验设计的原则在其设计中。近年来,越来越多的工程师开始使用最佳实验设计(英语:optimal design)的理论,来指定可以产生最大准确度(英语:efficient estimator)估计量的输入。

白箱模型是以第一原理建立的模型,例如一个物理过程利用牛顿运动定律来建立的模型。不过因为许多多系统或是过程的复杂,许多系统的模型会非常的复杂,无法在合理的时间内进行模拟。

另一种更常用的作法是从对系统行为及外在影响(系统的输入)的量测开始,再设法在不完全知道系统内真实运作的情形下,找到两者之间的关系。此作法称为系统识别,常见的方式有两种:

在Jin等人提出的非线性系统识别(英语:非線性系統識別)中,将灰箱模型描述为先假设模型的架构,再估测其模型参数。若模型架构已知,参数估测相对简单很多,不过大部分情形都不是如此。或者可以利用NARMAX方式来识别线性或是非线性的系统。此方法的灵活度比较,可以用在灰箱模型中(此时算法已有已知的结构)或是黑箱模型中(需要在系统识别过程中识别其结构),此作法的另一个好处是针对线性系统,算法会选择线性项,而针对非线性系统,算法会选择非线性项,因此识别的灵活度可以提高很多。

在开发控制系统时,工程师的目标是让控制系统(包括受控系统、回授回路以及控制器)有良好的性能。性能一般是依照系统的模型去设计其控制律来达成的,而系统的模型可能需要根据实验资料加以识别。假如模型识别的目的是为了控制用,最重要的和传统的系统识别不同:传统系统识别目的是要找到最接近实际资料的系统,但控制用的系统识别目的只要找到够好,可以满足闭回路控制性能的模型即可。最近这类的分析方式会称为“为控制进行的识别”(identification for control),简称I4C。

以下的例子可以说明“为控制进行的识别”(I4C)的概念。

考虑一系统,其真实的传递函数 G 0 ( s ) {\displaystyle G_{0}(s)} 是:

而识别到的模型 G ^ ( s ) {\displaystyle {\hat {G}}(s)} 如下:

若以传统系统识别的观点来看, G ^ ( s ) {\displaystyle {\hat {G}}(s)} 不是 G 0 ( s ) {\displaystyle G_{0}(s)} 的良好模型。 G ^ ( s ) {\displaystyle {\hat {G}}(s)} G 0 ( s ) {\displaystyle G_{0}(s)} 在低频的相位和大小都不同,而且 G 0 ( s ) {\displaystyle G_{0}(s)} 是渐近稳定系统,而 G ^ ( s ) {\displaystyle {\hat {G}}(s)} 只是稳定系统而已。不过若在控制应用上, G ^ ( s ) {\displaystyle {\hat {G}}(s)} 仍然是很好的模型。若利用负回授的比例控制器,配合很大的增益值 K {\displaystyle K} ,配合 G 0 ( s ) {\displaystyle G_{0}(s)} 的闭回路传递函数为

而配合 G ^ ( s ) {\displaystyle {\hat {G}}(s)} 的是

因为 K {\displaystyle K} 很大,可以得到 1 + K K {\displaystyle 1+K\approx K} 。因此这二个闭回路传递函数相当接近。因此,若使用此控制律时, G ^ ( s ) {\displaystyle {\hat {G}}(s)} 是真实系统“完整可接受的”识别模型。

总而言之,模型是否适合控制使用,不只要考虑系统和模型的差异程度,也要考量要使用的控制器。因此,在I4C架构下,给定控制性能的目标,控制工程师需要在识别阶段设计,使以模型为基础的控制器在真实系统中的性能越高越好。

若不去识别出系统的模型,而是直接在实验数据上作业,有时在设计控制器时会更方便。这就是直接资料驱动控制系统(英语:Data-driven control system)的例子。

^a 有时会用“模型识别”(model identification)此一词语,模型识别是更广义及现代的用法,而系统识别变为其特例之一

相关

  • 碳8碳的同素异形体指的是碳元素的同素异形体,即纯碳元素所能构成的各种不同的分子结构。包括了:碳同素异形体系统横跨完全极端且十分不同的范围。以钻石及石墨为例:另以不定形碳及
  • 执政党执政党,是一个国家政府中获得政权的政党,一般是国家元首、政府首脑或地方行政长官所属的政党,或者是其他形式而掌握执政权的政党。标准的议会民主国家中,执政党是指实际控制立法
  • 特雷布林卡纳粹集中营转移营比利时:布伦东克堡垒 · 梅赫伦转移营法国:居尔集中营 · 德朗西集中营意大利:波尔查诺转移营荷兰:阿默斯福特集中营 · 韦斯特博克转移营挪威:法斯塔德集中营部
  • 转化 (生物)转型(英语:transformation),又译转化,即细胞通过摄取外源遗传物质(DNA或RNA)而发生遗传学改变的过程。在转化过程中,转化的DNA片段称为转化因子。受体菌只有处在感受态时才能够摄
  • 大街大街或大马路是指城镇中心的主要街道,是商业集中点,一般是城镇中商店、百货店、専门店、饮食店等商业施设最集中的地方,也是人潮集中点。较小的城镇一般只有一条大街,较大的城镇
  • 保罗·洪伦德保罗·洪伦德(英语:Paul Hollander,1932年10月3日-2019年4月9日),生于匈牙利布达佩斯,美国社会学家,以对共产主义和左派的批评而闻名。洪伦德在1956年匈牙利革命后来到英国,开始了新
  • 托马斯·德克托马斯·德克(英语:Thomas Alexander Dekker,1987年12月28日-)是美国的一位演员、音乐人和配音演员。他也是一位歌手,已经发行了两张专辑。德克出生在内华达州拉斯维加斯。他的母
  • 莫勒山 (沙布来山区)坐标:46°06′24″N 06°27′18″E / 46.10667°N 6.45500°E / 46.10667; 6.45500莫勒山(法语:Le Môle),是法国的山峰,位于该国东部,由上萨瓦省负责管辖,属于沙布来山区的一部分,距
  • 古罗马化妆习俗化妆品起初在古罗马用于各种仪式上,后变为女性日常生活使用的物品,尤其多为娼妓和富有女性使用。一些从中国、德国和高卢进口的时尚化妆品价格高昂,以至于在公元前189年,Lex Opp
  • 普罗斯佩·梅里美普罗斯佩·梅里美(Prosper Mérimée,1803年9月28日-1870年9月23日),法国现实主义作家,中短篇小说大师,剧作家,历史学家。梅里美生于法国巴黎一个知识分子家庭,家境富裕。父亲在巴黎