全等三角形

✍ dations ◷ 2025-10-10 00:47:46 #全等三角形
全等三角形指两个全等的三角形,它们的三条边及三个角都应对等。全等三角形是几何中全等之一。根据全等转换,两个全等三角形可以平移、旋转、把轴对称,或重叠等。全等的数学符号为: ≅ {displaystyle cong }当使用该符号时,需保证符号两边的角、边一一对应。当两个三角形的对应边及角,完全相等,便是全等三角形。全等三角形有以下性质:若三角形ABC与三角形DEF是全等时(如右图),关系公式为:下列三对边长为“对应边”:下列三对角为“对应角”:同时,所有对应边长及角度均相等:因为多边形可由多个三角形组成,所以利用此方法,亦可验证其它全等的多边形。下列五种方法均可验证全等三角形:下列两种方法不能验证为全等三角形:以上的各方法也可通过三角函数的相关定理证明。这相当于解三角形,即三条边三个角一共六个量、固定其中三个而判断剩下三个量是否有唯一解。如右图△ A B C ≅ △ C D A {displaystyle triangle ABCcong triangle CDA,!} 此时三边已知,三个角可分别由余弦定理计算,由于 cos ⁡ {displaystyle cos {}} 在 0°到 180°之间是单调的所以 arccos ⁡ {displaystyle arccos {}} 可保证解出唯一值。如右图△ A B C ≅ △ A D C {displaystyle triangle ABCcong triangle ADC,!} 此时两边夹一角已知,首先用余弦定理计算第三边,接下来与 SSS 的情况相同。如右图△ A B C ≅ △ A E D {displaystyle triangle ABCcong triangle AED,!} 此时两角夹一边已知,通过三角形内角和得到第三角后用正弦定理计算剩下两边。如右图△ A B E ≅ △ D C E {displaystyle triangle ABEcong triangle DCE,!} 仍然是做减法得出第三角,接下来与 ASA 相同。为直角三角形中专用的三角型全等性质 ,即为直角三角形中的SSA ,也称为斜股性质 ,如右图△ A B C ≅ △ D F E {displaystyle triangle ABCcong triangle DFE,!} 勾股定理或是直接连两边的顶端解出剩下一边,即变成 SSS或SAS。AAA(角、角、角),指两个三角形的任何三个角都对应地相同。但这不能判定全等三角形,但AAA能判定相似三角形。在几何学上,当两条线叠在一起时,便会形一个点和一个角。而且,若该线无限地廷长,或无限地放大,该角度都不会改变。同理,在左图中,该两个三角形是相似三角形,这两个三角形的关系是放大缩小,因此角度不会改变。这样,便能得知若边无限地根据比例加长,角度都保持不变。因此,AAA并不能判定全等三角形。从正弦定理的角度看, a sin ⁡ α = b sin ⁡ β = c sin ⁡ γ = 2 R {displaystyle {frac {a}{sin {alpha }}}={frac {b}{sin {beta }}}={frac {c}{sin {gamma }}}=2R} 这个比例的比值可以任意缩放,因此无法唯一确定三边长度。SSA(边、边、角),也称为ASS ,指两个三角形的任一角及另外两个没有夹着该角的边相等。但这不能判定全等三角形。在右图中,分别有三角形ABC及三角形DEF,并提供了以下资讯:那即是SSA。假如在右图绘画一个圆形,中心点为点E,半径为 E F ¯ {displaystyle {overline {EF}}} 。透过这个圆形便会发现, ∠ E D F {displaystyle angle EDF} 和 D E ¯ {displaystyle {overline {DE}}} 没有改变下,会出现另一个与 E F ¯ {displaystyle {overline {EF}}} 一样长度的直线(即图中的 E G ¯ {displaystyle {overline {EG}}} )。这样便能证明SSA并不能验证全等三角形,(除非已知 B C ¯ > A B ¯ {displaystyle {overline {BC}}>{overline {AB}}} 。当是直角三角形时应称为RHS)。虽然如此,当 ∠ B A C {displaystyle angle BAC} ≥ 90°时, ∠ B A C > ∠ A C B {displaystyle angle BAC>angle ACB} 。又 ∠ B A C > ∠ A C B {displaystyle angle BAC>angle ACB} ⇔ B C ¯ > A B ¯ {displaystyle {overline {BC}}>{overline {AB}}} , B C ¯ > A B ¯ {displaystyle {overline {BC}}>{overline {AB}}} ,故可验证全等三角形。再次使用正弦定理, a sin ⁡ α = b sin ⁡ β = c sin ⁡ γ = 2 R {displaystyle {frac {a}{sin {alpha }}}={frac {b}{sin {beta }}}={frac {c}{sin {gamma }}}=2R} 其中已知 a = D E ¯ {displaystyle a={overline {DE}}} 、 c = E G ¯ = E F ¯ {displaystyle c={overline {EG}}={overline {EF}}} 和 α = ∠ D {displaystyle alpha =angle D} ,可解出 sin ⁡ γ {displaystyle sin {gamma }} ,但 sin ⁡ {displaystyle sin {}} 在 0°到 180°上先升后降导致 arcsin ⁡ {displaystyle arcsin {}} 有两解,即 γ {displaystyle gamma } 可能是钝角或锐角(或退化为只有一解是直角的特殊情况,此处略去),分别对应图中的 ∠ D G E {displaystyle angle DGE} 和 ∠ D F E {displaystyle angle DFE} 。然而若已知该三角形是直角或钝角三角形时,可以视情况排除掉其中的一个解、进而唯一确定 γ {displaystyle gamma } ,此时做减法得出 β {displaystyle beta } 后即可用余弦定理解得最后一边 B {displaystyle B} 。

相关

  • 冲田总司冲田 总司(1842年7月8日-1868年7月19日),本名藤原春政,幼名宗次郎,后改为藤原房良、冲田总司,生于江户(今日本东京都)白河藩宅,是江户时代后期的新选组队士、局长助勤、一番队组长、剑
  • 物态假设一个系统是由一种物质均匀组成,拥有均匀的物理与化学性质,则称这系统只具有一种相(英语:Phase)。这是一种简单的系统,称为均相系统(英语:homogeneous (chemistry))。更复杂的系统
  • 好氧菌好氧生物(英语:Aerobic organism,或 aerobe),又译为好气生物、耗氧生物、需氧生物,是能在有氧的环境中生存及生长的生物。好氧生物利用氧的化学反应来分解糖及脂肪,以获得能量。几
  • 免疫缺乏免疫缺陷(英语:immunodeficiency)是指免疫系统抵抗传染病的能力失常或欠缺。免疫缺陷还可能降低肿瘤免疫监视功能。免疫缺陷多为继发性(secondary)免疫缺陷,不过也有些人生来就有
  • 冷泉港实验室冷泉港实验室(The Cold Spring Harbor Laboratory,缩写CSHL),又译为科尔德斯普林实验室,是一个非营利的私人科学研究与教育中心,位于美国纽约州长岛上的冷泉港,此机构的研究对象包
  • 残疾人权利公约《残疾人权利公约》(英语:Convention on the Rights of Persons with Disabilities, 简称CRPD),是联合国于2006年12月13日通过的有关保护残疾人人权的国际公约。公约的草案于200
  • 耶鲁大学出版社耶鲁大学出版社是美国耶鲁大学的大学出版社(英语:university press)。它于1908年由 George Parmly Day 创建, 在1961年成为耶鲁大学的官方部门,但财政和运作自主。截至2009年,耶鲁
  • 松川事件松川事件 为1949年(即昭和24年)8月17日凌晨3点9分(当时适属美军占领期间,故正值夏时制采行,其实际发生时间,应为凌晨2点9分),国铁东北本线福岛县松川站-金谷川站间发生列车翻覆意外,造
  • 羊腩羊腩是广东人对羊腹部下侧肉,为秋季及冬季常见的食品,广东及港澳通常以柱侯酱及枝竹煮制成“羊腩煲”。
  • 惊恐症恐慌症,是一种焦虑症,特征为没有预兆地一再恐慌发作。恐慌发作是突然的短期强烈恐惧,可能包含心悸、流汗、手颤抖、呼吸困难、麻痹感、或是有非常严重的事即将发生的感觉。症状