正常重力

✍ dations ◷ 2025-10-06 20:31:39 #大地测量学,地球物理学,Pages that use a deprecated format of the math tags

正常重力(英语:Normal gravity)是正常椭球体在其外部空间所产生的重力,由意大利数学物理学家卡洛·索米里安在1929年引入,在大地测量学与地球物理学的研究中常用于对真实地球所产生的重力进行近似。在正常重力场中,正常椭球所产生的重力位和能够以较为简单的函数关系表达,且与真实的地球重力位相接近,而正常重力即为这一正常重力位所对应的重力。:190,212根据不同的定义方式,真实重力与正常重力之间的差异被称为重力异常或重力扰动。正常重力与真实重力之间的比例约为 99.995 % {\displaystyle 99.995\%} :15。

由于正常重力能够被精确计算,其在高程系统中也用于代替真实重力来作为正常高系统所采用的测量值。:42

正常重力值在两极最大,在赤道处最小,随纬度降低呈递减趋势,相对于赤道面对称而与经度无关。椭球面上几个特殊的重力值分别为:

设正常椭球体在其外部空间产生的正常重力位为 U {\displaystyle U} ,则正常重力矢量被定义为该正常重力位的梯度::68

在椭球坐标系 ( u , β , λ ) {\displaystyle (u,\beta ,\lambda )} 中,正常重力矢量的三个分量具体表示为::68

上式中的 w = u 2 + E 2 sin 2 β u 2 + E 2 {\displaystyle w={\sqrt {u^{2}+E^{2}\sin ^{2}\beta \over u^{2}+E^{2}}}} 是为简化公式而引入的辅助量:67, E {\displaystyle E} 是椭球的半焦距:39。又因正常重力位 U {\displaystyle U} 与经度无关,所以正常重力矢量的经度分量为零。

由正常重力的数学表达式可以得出,正常重力的值可以根据正常重力位 U {\displaystyle U} 的偏导数,以及正常椭球体本身的几何性质得到。而正常椭球体的确定只需要四个基本参数:椭球的半长轴 a {\displaystyle a} 、几何扁率 f {\displaystyle f} 、赤道上的正常重力值 γ e {\displaystyle \gamma _{e}} ,以及地球自转的角速度 ω {\displaystyle \omega } ,其他的几何参数可以由上述基本参数确定::79

亦有一些坐标系统会选择其他的基本参数,例如GRS80椭球选用的是地心引力常数 G M {\displaystyle GM} 、地球动力学形状因子 J 2 {\displaystyle J_{2}} 、地球自转角速度 ω {\displaystyle \omega } 和椭球的半长轴 a {\displaystyle a} ,但其他的椭球参数仍能由这些基本参数计算而得。

法国数学家克莱罗在其发表于1743年的著作中给出了地球的几何扁率 f {\displaystyle f} 与重力扁率 f {\displaystyle f^{*}} 之间的对应关系,即克莱罗定理。在顾及至扁率的平方项的情况下,该定理可表述为:

重力扁率 f {\displaystyle f^{*}} 的定义与几何扁率类似,其由椭球赤道处的重力 γ e {\displaystyle \gamma _{e}} 和椭球极点处的重力 γ p {\displaystyle \gamma _{p}} 决定 ::76

其中 m = ω 2 a 2 b G M {\displaystyle m={\omega ^{2}a^{2}b \over GM}} :69,且有 ω 2 b γ e = m + 3 2 m 2 {\displaystyle {\omega ^{2}b \over \gamma _{e}}=m+{3 \over 2}m^{2}} :76。

克莱罗定理给出了椭球赤道处的正常重力值和极点处的正常重力值,而椭球面上其他纬度的正常重力则可由正常重力公式计算得到,这一公式由索米里安在1929年给出::70

其中 β {\displaystyle \beta } 是椭球面上某点的归化纬度,顾及到大地纬度 φ {\displaystyle \varphi } 与归化纬度 β {\displaystyle \beta } 存在如下转换关系:

则正常重力公式也可以表达成大地纬度 φ {\displaystyle \varphi } 的函数:

正常重力公式也可以展开为几何扁率 f {\displaystyle f} 的级数,其截断形式为::77

其中的系数为:

这一公式也可写为:

其中的 f = f 2 + f 4 {\displaystyle f^{*}=f_{2}+f_{4}} 为上述提到的重力扁率。

正常重力公式还可以闭合形式表达::4-1

其中的系数 k {\displaystyle k} 为:

采用不同的椭球参数和不同的表达形式,正常重力公式可以有不同的数值计算形式,常用的几条公式包括:

使用于GRS80坐标系

在椭球面外部不远处,其正常重力 γ h {\displaystyle \gamma _{h}} 可以在其沿法线到椭球面上投影处展开为正常高 h {\displaystyle h} 的级数::78

由广义布隆斯方程,椭球面的外部空间的重力梯度与椭球面(水准面)的平均曲率半径 J {\displaystyle J} 的关系为::78

又二次导数 2 γ / h 2 {\displaystyle \partial ^{2}\gamma /\partial h^{2}} 是微小量,可以将其近似近似于在球面外部微分(即以半长轴 a {\displaystyle a} 代替 r {\displaystyle r} ),得到::78

得到正常重力的向上延拓公式为::79

上式的数值形式近似为::27

相关

  • 逆转录聚合酶链式反应逆转录PCR,或者称逆转录PCR(reverse transcription-PCR, RT-PCR),是聚合酶链式反应(PCR)的一种广泛应用的变形。在RT-PCR中,一条RNA链被逆转录成为互补DNA,再以此为模板透过PCR
  • 水产学渔业、水产业是指采捕或养殖水生动物、植物的生产事业和行业。渔业狭义上指捕捞渔业或称捕鱼业、渔捞业,可细分近海渔业和远洋渔业。此外,渔业还有一种叫养殖渔业(或称水产养殖
  • 国家橄榄球联盟国家美式橄榄球联盟(National Football League,NFL)是世界最大的职业美式橄榄球联盟,也是世界最具商业价值的体育联盟之一。联盟最早在1920年以美国职业美式橄榄球協会(American
  • 磷虾磷虾是一种类似虾的海洋无脊椎动物,生物学上属于磷虾目(Euphausiacea)。磷虾这种小型的甲壳亚门浮游动物是须鲸、蝠鲼、鲸鲨、锯齿海豹及海豹的食物,也是一些海鸟的主要食物。是
  • 国家运输安全委员会国家运输安全委员会(英语:National Transportation Safety Board,缩写:NTSB)是一个独立的美国政府调查机构,成立于1967年,负责民用运输事故调查(英语:accident investigation),总部设于
  • 高氙酸盐高氙酸盐是高氙酸(H4XeO6)所成的盐,含有高氙酸根离子—XeO64−。高氙酸盐都是强氧化剂,可由四氧化氙溶于水生成高氙酸,再用碱中和得到。高氙酸盐的溶解性与碳酸盐类似,高氙酸钾和
  • 乔登·皮尔乔丹·哈沃斯·皮尔(英语:Jordan Haworth Peele,1979年2月21日-)是一位美国男演员、喜剧演员、编剧、导演和制片人。较著名的是在电视剧《疯电视》(2003年至2008年)中担任常驻演员,
  • 美国建交列表美国建交列表美利坚合众国目前已与189个国家保持外交关系(2018年9月)。联合国成员国中,伊朗、叙利亚与美国仍处于断交状态,朝鲜民主主义人民共和国因与美国相互敌对而未建交,不丹
  • 复活节的计算复活节的计算(computus,拉丁文“计算”之意),其规则是复活节的日期是在3月21日当日或之后的满月日后的首个星期日。天主教会设计了方法去定一个“天主教的月”,而不像犹太人般观
  • 韦诺萨韦诺萨(意大利语:Venosa)是意大利南部巴西利卡塔大区波坦察省的一个镇,人口12,147(2004年)。罗马帝国时代著名的诗人贺拉斯出生于韦诺萨。