组合数学

✍ dations ◷ 2025-10-08 01:04:09 #组合数学
广义的组合数学(英语:Combinatorics)就是离散数学,狭义的组合数学是组合计数、图论、代数结构、数理逻辑等的总称。但这只是不同学者在叫法上的区别。总之,组合数学是一门研究可数或离散对象的科学。随着计算机科学的日益发展,组合数学的重要性也日渐凸显,因为计算机科学的核心内容是使用算法处理离散数据。狭义的组合数学主要研究满足一定条件的组态(也称组合模型)的存在、计数以及构造等方面的问题。 组合数学的主要内容有组合计数、组合设计、组合矩阵、组合优化(最佳组合)等。最基本的组合数学的思想和枚举的方法在古老时代就已经出现。公元前6世纪的古印度外科医生妙闻已经指出可以由6个相异的味道组合出63种相异的结果(每个味道都可以选择或不选择,但不能都不选择,因此有26 − 1=63种组合);罗马时代的希腊史家普鲁塔克与克律西波斯、喜帕恰斯讨论了后来显示与Schröder–Hipparchus数(英语:Schröder–Hipparchus number)有关的枚举问题;公元前3世纪的阿基米德在其数学文章Ostomachion(英语:Ostomachion)中考虑了一个拼接拼图的智力游戏(tiling puzzle)。中世纪时,组合数学持续发展(主要是在欧洲外的文明)。公元850年的印度数学家Mahāvīra(英语:Mahāvīra (mathematician))提供了关于排列数与组合的公式,甚至可能早在6世纪印度的数学家就对这些公式熟悉 。公元1140年哲学家与天文学家阿伯拉罕·伊本·埃兹拉确认了二项式系数的对称性,而二项式系数公式则是由犹太人数学家Gersonides在公元1321年得到的。杨辉三角形最早可追溯至10世纪的数学论文,在中国则首现于13世纪南宋杨辉的《详解九章算法》。在英格兰,则出现一些与哈密顿回路相关的例子。文艺复兴时期,与其他数学或科学领域一样,组合数学再现生机。帕斯卡、牛顿、雅各布·白努利、欧拉等人的研究为此新兴领域打下基础。在更近代时,西尔维斯特和MacMahon(英语:Percy Alexander MacMahon)也对组合计数和代数组合学作出贡献。人们此时也对图论有高度的兴趣,例如关于四色问题的领域。在20世纪下半叶,组合数学成长相当快速,甚至出现数十种新的期刊和会议。 在某种程度上,这样的成长是由对其他领域的连结与应用所带动,包括代数、几率论、泛函分析和数论等。从 n {displaystyle n} 个元素中取出 k {displaystyle k} 个元素, k {displaystyle k} 个元素的排列数量为:以赛马为例,有8匹马参加比赛,玩家需要在彩票上填入前三胜出的马匹的号码,从8匹马中取出3匹马来排前3名,排列数量为:因为一共存在336种可能性,因此玩家在一次填入中中奖的概率应该是:不过,中国大陆的教科书则是把从n取k的情况记作 P n k {displaystyle P_{n}^{k}} 或 A n k {displaystyle A_{n}^{k}} (A代表Arrangement,即排列)。上面的例子是建立在取出元素不重复出现状况。从 n {displaystyle n} 个元素中取出 k {displaystyle k} 个元素, k {displaystyle k} 个元素可以重复出现,这排列数量为:以四星彩为例,10个数字取4个数字,因可能重复所以排列数量为:这时的一次性添入中奖的概率就应该是:和排列不同的是,组合取出元素的顺序不考虑。从 n {displaystyle n} 个元素中取出 k {displaystyle k} 个元素, k {displaystyle k} 个元素的组合数量为:不过,中国大陆的教科书则是把从n取k的情况记作 C n k {displaystyle C_{n}^{k}} 。以六合彩为例。在六合彩中从49颗球中取出6颗球的组合数量为:如同排列,上面的例子是建立在取出元素不重复出现状况。从 n {displaystyle n} 个元素中取出 k {displaystyle k} 个元素, k {displaystyle k} 个元素可以重复出现,这组合数量为:以取色球为例,每种颜色的球有无限多颗,从8种色球中取出5颗球,这组合数量为:因为组合数量公式特性,重复组合转换成组合有另一种公式为:另外 H k n {displaystyle H_{k}^{n}} 也可以记为 F k n {displaystyle F_{k}^{n}}

相关

  • 胰脏炎胰脏炎(英语:Pancreatitis)也称为胰腺炎,指的是胰脏的发炎。胰脏是身体里的一个大型器官,位置在胃后方,功能有分泌消化酵素等等。 胰脏炎有两种,分别是急性(英语:Acute_pancreatitis)
  • 头孢羟氨苄头孢羟氨苄是一种杀菌的头孢菌素类广谱抗生素,对革兰氏阳性和革兰氏阴性细菌的感染有效。它由头孢氨苄羟基段衍生而来。可用于治疗轻度至中度易受感染,如因细菌化脓性链球菌引
  • 互惠税则法互惠税则法(英语:Reciprocal Tariff Act,1934年6月12日颁布,ch. 474,48 Stat. 943,美国法典第19卷(英语:Title 19 of the United States Code)第1351章)是一部美国国会在1934年颁布
  • 2018年-2019年刚果基伍埃博拉出血热爆发2018年-2020年基伍埃博拉出血热爆发始于2018年8月1日,至今尚未结束。为发生在刚果民主共和国东部的埃博拉病毒疫情,于2019年6月扩散至邻国乌干达,截至2020年1月20日,已有超过3300
  • 乙酰乙酰辅酶A乙酰乙酰辅酶A(英语:Acetoacetyl CoA)是甲羟戊酸途径中合成β-羟基-β-甲戊二酸单酰辅酶A(HMG-CoA)的前体,是胆固醇合成的必要物质,在肝脏中的酮体合成里也有一定作用。在组织中的
  • 市政厅剧院市政厅剧院(法语:Théâtre du Capitole) 是位于法国城市图卢兹的图卢兹市政厅内的一个剧院。现在的剧院修建于1818年,在1917年曾遭遇火灾,但在1923年修复。剧院有1156个座位。
  • 去氧核糖核苷酸核苷酸(英语:Nucleotide)是核酸的基本组成单位。核苷酸以一个含氮碱基为核心,加上一个五碳糖和一个或者多个磷酸基团组成。含氮碱基有五种,分别是腺嘌呤(A)、鸟嘌呤(G)、胞嘧啶(C)、胸
  • 可变数目串联重复可变数目串联重复(或VNTR)是基因组中的位置,其中短核苷酸序列被组织为串联重复。这些可以在许多染色体上找到,并且经常显示个体之间的长度变化(重复的数量)。 每个变体充当遗传等
  • 非那雄胺非那斯特莱(英语:Finasteride),或名非那雄胺,别名非那司提,非那甾胺。是预防摄护腺肥大的药物。非那斯特莱会抑制头发毛囊的第二型5α还原酶(type 2 5-alpha reductase),使双氢睾酮(Di
  • 拜达里文化坐标:27°00′N 31°25′E / 27.000°N 31.417°E / 27.000; 31.417拜达里文化(英语:Badari culture)上埃及早期的文化之一(约公元前4000年),典型遗址为尼罗河东岸的拜达里。该文化