线性映射

✍ dations ◷ 2025-07-20 17:39:10 #函数,抽象代数,线性代数,线性算子

向量 · 向量空间  · 行列式  · 矩阵

标量 · 向量 · 向量空间 · 向量投影 · 外积 · 内积 · 数量积 · 向量积

矩阵 · 行列式 · 线性方程组 · 秩 · 核 · 迹 · 单位矩阵 · 初等矩阵 · 方块矩阵 · 分块矩阵 · 三角矩阵 · 非奇异方阵 · 转置矩阵 · 逆矩阵 · 对角矩阵 · 可对角化矩阵 · 对称矩阵 · 反对称矩阵 · 正交矩阵 · 幺正矩阵 · 埃尔米特矩阵 · 反埃尔米特矩阵 · 正规矩阵 · 伴随矩阵 · 余因子矩阵 · 共轭转置 · 正定矩阵 · 幂零矩阵 · 矩阵分解 (LU分解 · 奇异值分解 · QR分解 · 极分解 · 特征分解) · 子式和余子式 · 拉普拉斯展开 ·

线性空间 · 线性变换 · 线性子空间 · 线性生成空间 · 基 · 线性映射 · 线性投影 · 线性无关 · 线性组合 · 线性泛函 · 行空间与列空间 · 对偶空间 · 正交 · 特征向量 · 最小二乘法 · 格拉姆-施密特正交化 ·

在数学中,线性映射(有的书上将“线性变换”作为其同义词,有的则不然)是在两个向量空间(包括由函数构成的抽象的向量空间)之间的一种保持向量加法和标量乘法的特殊映射。线性映射从抽象代数角度看是向量空间的同态,从范畴论角度看是在给定的域上的向量空间所构成的范畴中的态射。

“线性算子”也是与“线性映射”有关的概念。但是不同数学书籍上对“线性算子”的定义存在区别。在泛函分析中,“线性算子”一般被当做“线性映射”的同义词。而有的书则将“线性算子”定义为“线性映射”的自同态子类(详见下文)。为叙述方便,本条目在提及“线性算子”时,采用后一种定义,即将线性算子与线性映射区别开来。

V {\displaystyle V} 中任何两个向量 x {\displaystyle x} 中任何标量 a {\displaystyle a} 和可被看作在不同域上的向量空间。那么必须指定哪些基础域要被用在“线性”的定义中。如果和被看作前面的域上的空间,我们谈论的就是-线性映射。例如,复数的共轭是 R {\displaystyle R} 到数域的线性映射有一个特别的名字,叫做“线性泛函”。线性泛函分析就是将空间维度增加到无穷维(包括不可数无穷维)的高等线性代数。线性泛函分析是泛函分析最成熟的分支,但泛函分析最早研究的是有关向量空间上的实值函数(它们一般是非线性映射)的变分学问题。

从定义立即得出 f ( 0 ) = 0 {\displaystyle f(0)=0} 和是有限维的,并且在这些空间中有选择好的基,则从到的所有线性映射可以被表示为矩阵。反过来说,矩阵生成线性映射的例子:如果是实数的 m × n {\displaystyle m\times n} 的一个基。则在中所有向量 v {\displaystyle v} 的基。则可以表示每个 f ( v j ) {\displaystyle f(v_{j})} 对在中任何向量的值。如果我放置 c 1 , , c n {\displaystyle c_{1},\cdots ,c_{n}} 是基础域的一个元素,则定义自 ()() = (())的映射也是线性的。

所以从 V {\displaystyle V} 的自同态;所有这种自同态的集合 E n d ( V ) {\displaystyle \mathrm {End} (V)} 的自同态也刚好是同构则称之为自同构。两个自同构的复合再次是自同构,所以的所有的自同构的集合形成一个群,的自同构群可表为 A u t ( V ) {\displaystyle \mathrm {Aut} (V)} 之维度 n {\displaystyle n} 中元素的所有 n × n {\displaystyle n\times n} 的自同态群同构于带有在中元素的所有 n × n {\displaystyle n\times n} 的子空间,而 Im ( f ) {\displaystyle \operatorname {Im} (f)} 的子空间。下面的叫做秩-零化度定理的维度公式经常是有用的:

dim ( I m ( f ) ) {\displaystyle \dim(\mathrm {Im} (f))} 和是有限维的,基已经选择好并且被表示为矩阵,则的秩和零化度分别等于矩阵的秩和零化度。

多重线性映射是线性映射最重要的推广,它也是格拉斯曼代数和张量分析的数学基础。其特例为双线性映射。

相关

  • 肌肉痛肌肉痛(英语:Myalgia),如字面意思所言——肌肉疼痛,是多种疾病的症状,其最常见的成因是肌肉(群)的过度拉伸、过度使用。没有肌肉创伤史的肌肉痛则通常是由病毒感染所引起,而长期肌肉
  • 格罗宁根格罗宁根省(荷兰语:Groningen 荷兰语发音:.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida Sans Unicode","Code2000","
  • 普罗万普罗万(Provins)是一座法国塞纳-马恩省市镇,也是该省的副省会。位于巴黎东南77公里处。普罗万在中世纪是一座属于香槟伯爵的防御城镇。由于交通便利,普罗万在12—13世纪成为香槟
  • 2-己醇2-己醇,是一种醇类的有机化合物,是在二号碳上接羟基的己醇。它的化学式是C6H13OH、示性式是C4H9CH(OH)CH3,是正己醇的一种异构物。 2-己醇有一个手性中心,故存在光学异构物
  • 台湾高等法院高雄分院坐标:22°39′41″N 120°17′57″E / 22.661370°N 120.299085°E / 22.661370; 120.299085台湾高等法院高雄分院,是中华民国的二级法院之一,属于普通法院,行政组织上系台湾高
  • 台中市台中市文化资产是台中市文化资产处与文化部文化资产局依《文化资产保存法》里的九类有形文化资产(古迹、历史建筑、纪念建筑、聚落建筑群、考古遗址、史迹、文化景观、古物〈
  • 荣誉勋章:太平洋战役《荣誉勋章:血战太平洋》(英语:Medal of Honor: Pacific Assault,港台译作“荣誉勋章:太平洋战役”,中国大陆官方译为“荣誉勋章:太平洋之战”)是一款由EA为Microsoft Windows开发并
  • 给和平一个机会《宁静之机》(英语:Give Peace a Chance)是美国医务剧《实习医生格蕾》第6季的第7集,也是整部剧集的第109集,由钱德拉·威尔森(Chandra Wilson)执导,彼得·诺沃克(Peter Nowalk)编剧,20
  • 海蛇尾海蛇尾,或阳燧足,是属于棘皮动物门的海蛇尾纲,是种类最多的一个纲,其下包括有220个属和2000个种。海蛇尾的结构与海星相似,但体盘相对较大,腕5个,盘与腕之间有明显交界,而后者腕与盘
  • 信实通信信实通信(Reliance Communications, BSE: 532712),信实工业一部分,原名“信实信息通信”(Reliance Infocomm)与信实电信(Reliance Telecom)及Flag Telecom,都是信实通信投资(Reliance C