线性映射

✍ dations ◷ 2025-10-13 06:55:22 #函数,抽象代数,线性代数,线性算子

向量 · 向量空间  · 行列式  · 矩阵

标量 · 向量 · 向量空间 · 向量投影 · 外积 · 内积 · 数量积 · 向量积

矩阵 · 行列式 · 线性方程组 · 秩 · 核 · 迹 · 单位矩阵 · 初等矩阵 · 方块矩阵 · 分块矩阵 · 三角矩阵 · 非奇异方阵 · 转置矩阵 · 逆矩阵 · 对角矩阵 · 可对角化矩阵 · 对称矩阵 · 反对称矩阵 · 正交矩阵 · 幺正矩阵 · 埃尔米特矩阵 · 反埃尔米特矩阵 · 正规矩阵 · 伴随矩阵 · 余因子矩阵 · 共轭转置 · 正定矩阵 · 幂零矩阵 · 矩阵分解 (LU分解 · 奇异值分解 · QR分解 · 极分解 · 特征分解) · 子式和余子式 · 拉普拉斯展开 ·

线性空间 · 线性变换 · 线性子空间 · 线性生成空间 · 基 · 线性映射 · 线性投影 · 线性无关 · 线性组合 · 线性泛函 · 行空间与列空间 · 对偶空间 · 正交 · 特征向量 · 最小二乘法 · 格拉姆-施密特正交化 ·

在数学中,线性映射(有的书上将“线性变换”作为其同义词,有的则不然)是在两个向量空间(包括由函数构成的抽象的向量空间)之间的一种保持向量加法和标量乘法的特殊映射。线性映射从抽象代数角度看是向量空间的同态,从范畴论角度看是在给定的域上的向量空间所构成的范畴中的态射。

“线性算子”也是与“线性映射”有关的概念。但是不同数学书籍上对“线性算子”的定义存在区别。在泛函分析中,“线性算子”一般被当做“线性映射”的同义词。而有的书则将“线性算子”定义为“线性映射”的自同态子类(详见下文)。为叙述方便,本条目在提及“线性算子”时,采用后一种定义,即将线性算子与线性映射区别开来。

V {\displaystyle V} 中任何两个向量 x {\displaystyle x} 中任何标量 a {\displaystyle a} 和可被看作在不同域上的向量空间。那么必须指定哪些基础域要被用在“线性”的定义中。如果和被看作前面的域上的空间,我们谈论的就是-线性映射。例如,复数的共轭是 R {\displaystyle R} 到数域的线性映射有一个特别的名字,叫做“线性泛函”。线性泛函分析就是将空间维度增加到无穷维(包括不可数无穷维)的高等线性代数。线性泛函分析是泛函分析最成熟的分支,但泛函分析最早研究的是有关向量空间上的实值函数(它们一般是非线性映射)的变分学问题。

从定义立即得出 f ( 0 ) = 0 {\displaystyle f(0)=0} 和是有限维的,并且在这些空间中有选择好的基,则从到的所有线性映射可以被表示为矩阵。反过来说,矩阵生成线性映射的例子:如果是实数的 m × n {\displaystyle m\times n} 的一个基。则在中所有向量 v {\displaystyle v} 的基。则可以表示每个 f ( v j ) {\displaystyle f(v_{j})} 对在中任何向量的值。如果我放置 c 1 , , c n {\displaystyle c_{1},\cdots ,c_{n}} 是基础域的一个元素,则定义自 ()() = (())的映射也是线性的。

所以从 V {\displaystyle V} 的自同态;所有这种自同态的集合 E n d ( V ) {\displaystyle \mathrm {End} (V)} 的自同态也刚好是同构则称之为自同构。两个自同构的复合再次是自同构,所以的所有的自同构的集合形成一个群,的自同构群可表为 A u t ( V ) {\displaystyle \mathrm {Aut} (V)} 之维度 n {\displaystyle n} 中元素的所有 n × n {\displaystyle n\times n} 的自同态群同构于带有在中元素的所有 n × n {\displaystyle n\times n} 的子空间,而 Im ( f ) {\displaystyle \operatorname {Im} (f)} 的子空间。下面的叫做秩-零化度定理的维度公式经常是有用的:

dim ( I m ( f ) ) {\displaystyle \dim(\mathrm {Im} (f))} 和是有限维的,基已经选择好并且被表示为矩阵,则的秩和零化度分别等于矩阵的秩和零化度。

多重线性映射是线性映射最重要的推广,它也是格拉斯曼代数和张量分析的数学基础。其特例为双线性映射。

相关

  • 牛奶牛乳,俗称牛奶,是最古老的天然饮料之一。顾名思义,牛乳是牛的乳汁。在不同国家,牛乳也分有不同的等级,目前最普遍的是全脂、高钙低脂及脱脂牛乳。美国将牛乳按照脂肪含量分为五类
  • 响尾蛇亚种响尾蛇属于响尾蛇属(学名Crotalus)及侏儒响尾蛇属(学名Sistrurus),是一种有毒的蛇。它们都属于蝮亚科这类有毒蛇的分类之下。现存已知约有50种响尾蛇及多个亚种。顾名思义它
  • 表面改性技术表面改性技术(Surface modification)是仅对材料的表面进行处理的技术,如渗碳(或渗氮)、喷丸、激光处理、离子注入、表面涂层法、阳极氧化、化学气相沉积、物理气相沉积等等。
  • 力量训练力量训练是一种体能锻炼,常常会加于抵抗诱导肌肉收缩,从而增强力量,无氧耐力和骨骼肌的大小。当正确执行时,力量训练可以提供显著的功能性益处并改善整体健康,包括增加骨骼,肌肉,肌
  • 莫霍面莫霍界面,有时简称莫荷面,是地球的地壳与地幔的分界面。莫霍界面首先在1909年由克罗地亚地震学家莫荷洛维奇(Andrija Mohorovičić)发现。他观察到地震波(特别是P波)在此处波速会
  • 害羞羞怯(英语:Shyness),也叫害羞,是在接近其他人时,所出现恐惧、不舒服、尴尬的感觉,这通常发生在处于新的环境或是和不熟悉的人相处时。害羞可能是自尊感较低的人格特质。害羞感若相
  • 四千金的情人‘四千金的情人’(西班牙语:Belle Époque)是西班牙电影,获1994年奥斯卡金像奖最佳外语片。
  • 钝角亚目分类钝角亚目(学名:Amblycera)是啮虫目之下的一个亚目,原属虱毛目,现在是啮虫目之下七个亚目之一。本亚目物种被认为是所有虱子物种当中最原始的亚目,寄生于鸟类及哺乳类动物身上
  • 身心症身心性疾病,也翻译成身心症(somatoform disorder),是指由心理引起生理的疾病。
  • 油彩蜡膜虾Hymenocera elegans Heller, 1861油彩蜡膜虾(学名:Hymenocera picta),又称为海星虾、贵宾虾、丑角虾、小丑虾、跳舞虾 ,是生活于热带太平洋及印度洋珊瑚礁的一种海水虾。一般认为