最大似然估计

✍ dations ◷ 2025-10-08 17:45:55 #最大似然估计
在统计学中,最大似然估计(英语:maximum likelihood estimation,缩写为MLE),也称极大似然估计、最大概似估计,是用来估计一个概率模型的参数的一种方法。下边的讨论要求读者熟悉概率论中的基本定义,如概率分布、概率密度函数、随机变量、数学期望等。读者还须先熟悉连续实函数的基本技巧,比如使用微分来求一个函数的极值(即极大值或极小值)。 同时,读者须先拥有似然函数的背景知识,以了解最大似然估计的出发点及应用目的。给定一个概率分布 D {displaystyle D} ,已知其概率密度函数(连续分布)或概率质量函数(离散分布)为 f D {displaystyle f_{D}} ,以及一个分布参数 θ {displaystyle theta } ,我们可以从这个分布中抽出一个具有 n {displaystyle n} 个值的采样 X 1 , X 2 , … , X n {displaystyle X_{1},X_{2},ldots ,X_{n}} ,利用 f D {displaystyle f_{D}} 计算出其似然函数:若 D {displaystyle D} 是离散分布, f θ {displaystyle f_{theta }} 即是在参数为 θ {displaystyle theta } 时观测到这一采样的概率。若其是连续分布, f θ {displaystyle f_{theta }} 则为 X 1 , X 2 , … , X n {displaystyle X_{1},X_{2},ldots ,X_{n}} 联合分布的概率密度函数在观测值处的取值。一旦我们获得 X 1 , X 2 , … , X n {displaystyle X_{1},X_{2},ldots ,X_{n}} ,我们就能求得一个关于 θ {displaystyle theta } 的估计。最大似然估计会寻找关于 θ {displaystyle theta } 的最可能的值(即,在所有可能的 θ {displaystyle theta } 取值中,寻找一个值使这个采样的“可能性”最大化)。从数学上来说,我们可以在 θ {displaystyle theta } 的所有可能取值中寻找一个值使得似然函数取到最大值。这个使可能性最大的 θ ^ {displaystyle {widehat {theta }}} 值即称为 θ {displaystyle theta } 的最大似然估计。由定义,最大似然估计是样本的函数。考虑一个抛硬币的例子。假设这个硬币正面跟反面轻重不同。我们把这个硬币抛80次(即,我们获取一个采样 x 1 = H , x 2 = T , … , x 80 = T {displaystyle x_{1}={mbox{H}},x_{2}={mbox{T}},ldots ,x_{80}={mbox{T}}} 并把正面的次数记下来,正面记为H,反面记为T)。并把抛出一个正面的概率记为 p {displaystyle p} ,抛出一个反面的概率记为 1 − p {displaystyle 1-p} (因此,这里的 p {displaystyle p} 即相当于上边的 θ {displaystyle theta } )。假设我们抛出了49个正面,31个反面,即49次H,31次T。假设这个硬币是我们从一个装了三个硬币的盒子里头取出的。这三个硬币抛出正面的概率分别为 p = 1 / 3 {displaystyle p=1/3} , p = 1 / 2 {displaystyle p=1/2} , p = 2 / 3 {displaystyle p=2/3} .这些硬币没有标记,所以我们无法知道哪个是哪个。使用最大似然估计,基于二项分布中的概率质量函数公式,通过这些试验数据(即采样数据),我们可以计算出哪个硬币的可能性最大。这个似然函数取以下三个值中的一个:我们可以看到当 p ^ = 2 / 3 {displaystyle {widehat {p}}=2/3} 时,似然函数取得最大值。 显然地,这硬币的公平性和那种抛出后正面的几率是2/3的硬币是最接近的。这就是 p {displaystyle p} 的最大似然估计。现在假设例子1中的盒子中有无数个硬币,对于 0 ≤ p ≤ 1 {displaystyle 0leq pleq 1} 中的任何一个 p {displaystyle p} , 都有一个抛出正面概率为 p {displaystyle p} 的硬币对应,我们来求其似然函数的最大值:其中 0 ≤ p ≤ 1 {displaystyle 0leq pleq 1} . 我们可以使用微分法来求极值。方程两边同时对 p {displaystyle p} 取微分,并使其为零。其解为 p = 0 {displaystyle p=0} , p = 1 {displaystyle p=1} ,以及 p = 49 / 80 {displaystyle p=49/80} .使可能性最大的解显然是 p = 49 / 80 {displaystyle p=49/80} (因为 p = 0 {displaystyle p=0} 和 p = 1 {displaystyle p=1} 这两个解会使可能性为零)。因此我们说最大似然估计值为 p ^ = 49 / 80 {displaystyle {widehat {p}}=49/80} .这个结果很容易一般化。只需要用一个字母 t {displaystyle t} 代替49用以表达伯努利试验中的被观察数据(即样本)的“成功”次数,用另一个字母 n {displaystyle n} 代表伯努利试验的次数即可。使用完全同样的方法即可以得到最大似然估计值:对于任何成功次数为 t {displaystyle t} ,试验总数为 n {displaystyle n} 的伯努利试验。最常见的连续概率分布是正态分布,其概率密度函数如下:现在有 n {displaystyle n} 个正态随机变量的采样点,要求的是一个这样的正态分布,这些采样点分布到这个正态分布可能性最大(也就是概率密度积最大,每个点更靠近中心点),其 n {displaystyle n} 个正态随机变量的采样的对应密度函数(假设其独立并服从同一分布)为:或:这个分布有两个参数: μ , σ 2 {displaystyle mu ,sigma ^{2}} .有人可能会担心两个参数与上边的讨论的例子不同,上边的例子都只是在一个参数上对可能性进行最大化。实际上,在两个参数上的求最大值的方法也差不多:只需要分别把可能性 L ( μ , σ ) = f ( x 1 , , … , x n ∣ μ , σ 2 ) {displaystyle {mbox{L}}(mu ,sigma )=f(x_{1},,ldots ,x_{n}mid mu ,sigma ^{2})} 在两个参数上最大化即可。当然这比一个参数麻烦一些,但是一点也不复杂。使用上边例子同样的符号,我们有 θ = ( μ , σ 2 ) {displaystyle theta =(mu ,sigma ^{2})} .最大化一个似然函数同最大化它的自然对数是等价的。因为自然对数log是一个连续且在似然函数的值域内严格递增的上凸函数。求对数通常能够一定程度上简化运算,比如在这个例子中可以看到:这个方程的解是 μ ^ = x ¯ = ∑ i = 1 n x i / n {displaystyle {widehat {mu }}={bar {x}}=sum _{i=1}^{n}x_{i}/n} .这的确是这个函数的最大值,因为它是 μ {displaystyle mu } 里头惟一的一阶导数等于零的点并且二阶导数严格小于零。同理,我们对 σ {displaystyle sigma } 求导,并使其为零。这个方程的解是 σ ^ 2 = ∑ i = 1 n ( x i − μ ^ ) 2 / n {displaystyle {widehat {sigma }}^{2}=sum _{i=1}^{n}(x_{i}-{widehat {mu }})^{2}/n} .因此,其关于 θ = ( μ , σ 2 ) {displaystyle theta =(mu ,sigma ^{2})} 的最大似然估计为:如果 θ ^ {displaystyle {hat {theta }}} 是 θ {displaystyle theta } 的一个最大似然估计,那么 α = g ( θ ) {displaystyle alpha =g(theta )} 的最大似然估计是 α ^ = g ( θ ^ ) {displaystyle {hat {alpha }}=g({hat {theta }})} 。函数g无需是一个双射。最大似然估计函数在采样样本总数趋于无穷的时候达到最小方差(其证明可见于Cramer-Rao lower bound)。当最大似然估计非偏时,等价的,在极限的情况下我们可以称其有最小的均方差。 对于独立的观察来说,最大似然估计函数经常趋于正态分布。最大似然估计的偏差是非常重要的。考虑这样一个例子,标有1到n的n张票放在一个盒子中。从盒子中随机抽取票。如果n是未知的话,那么n的最大似然估计值就是抽出的票上标有的n,尽管其期望值的只有 ( n + 1 ) / 2 {displaystyle (n+1)/2} .为了估计出最高的n值,我们能确定的只能是n值不小于抽出来的票上的值。最大似然估计最早是由罗纳德·费雪在1912年至1922年间推荐、分析并大范围推广的。(虽然以前高斯、拉普拉斯、T. N. Thiele和F. Y. 埃奇沃思也使用过)。 许多作者都提供了最大似然估计发展的回顾。大部分的最大似然估计理论都在贝叶斯统计中第一次得到发展,并被后来的作者简化。

相关

  • 败血症败血症(拉丁语:Sepsis)(中国大陆译为脓毒症)指的是由于感染所引起的全身性发炎的严重疾病。常见的临床症状包括发烧、呼吸频率和心跳加速,以及意识不清。有时患者也会发生特定的
  • 内科学人体解剖学 - 人体生理学 组织学 - 胚胎学 人体寄生虫学 - 免疫学 病理学 - 病理生理学 细胞学 - 营养学 流行病学 - 药理学 - 毒理学内科学是临床医学的专科,几乎是所有其
  • 精神疾病精神障碍(英语:mental disorder),或称精神疾病,俗称心理疾病,主要是一组以表现在行为、心理活动上的紊乱为主的精神症状。目前研究所得到的结果认为主要是由于家庭、社会环境等外
  • 妊娠糖尿病妊娠期糖尿病(gestational diabetes mellitus,简写成GDM)是指原先没有糖尿病症状的女性,在怀孕时出现高血糖的症状,妊娠糖尿病不一定会有明显症状,不过会增加妊娠毒血症、忧郁症的
  • 二联性精神病二联性精神病(法文:Folie à deux),意思是“二人共享的疯狂”: 形容一个有精神病症状的人,将妄想的信念传送到另一个人。同样的症状可传达至三人,四人,甚至更多。虽然研究文献主要
  • 美国医学会美国医学会(American Medical Association,缩写AMA),成立于1847年,1897年成为法人 ,为美国最大的医生组织。总部位于芝加哥。会员人数超过21万(2010年)。 组织代表美国医生(M.D. 和 D
  • 贝克每松贝克每松(Beclometasone dipropionate),是一种类固醇类药物,为一种糖皮质素,常见商品名为Qvar。 此药物作为吸入器的药粉、乳霜、药片以及鼻喷剂。 吸入器药粉常用于治疗长期的气
  • 几内亚比绍面积国家领袖国内生产总值(购买力平价) 以下资讯是以2016年估计国内生产总值(国际汇率) 以下资讯是以2016年估计人类发展指数 以下资讯是以2018年估计几内亚比绍共和国(葡萄牙语:R
  • 西加鱼毒雪卡毒素(英语:Ciguatoxins,简称CTX),又名雪卡鱼毒素、西加鱼毒素,是一类引起西加鱼毒中毒的毒素,共有4种。食物中这类毒素无法被烹饪去除,因此最好不要吃珊瑚礁鱼类的头部、皮肤及
  • 印度苦楝树Melia azadirachta L. Antelaea azadirachta (L.) Adelb.印度苦楝树(英语:Azadirachta indica),又称印度楝树、印度蒜楝、印度假苦楝、宁树(英语:Neem)、印度紫丁香(Indian lilac),楝