首页 >
学生t检验
✍ dations ◷ 2025-07-21 11:09:04 #学生t检验
学生t检验(英语:Student's t-test)是指虚无假设成立时的任一检定统计有学生t-分布的统计假说检定,属于母数统计。学生t检验常作为检验一群来自正态分配总体的独立样本之期望值的是否为某一实数,或是二(两)群来自正态分配总体的独立样本之期望值的差是否为某一实数。举个简单的例子,也就是说我们可以在抓取一个班级的男生,去比较该班与全校男生之身高差异程度是不是推测的那样,或是不同年级班上的男生身高的差异的场合是否一如预期使用此检验法。学生t检验是威廉·戈塞为了观测酿酒品质于1908年所提出的,“学生”则是他的笔名。
基于克劳德·健力士(Claude Guinness)聘用从牛津大学和剑桥大学出来的最好的毕业生,以将生物化学及统计学应用到健力士工业流程的创新政策,戈斯特受雇于都柏林的健力士酿酒厂担任统计学家。戈斯特提出了t检验以降低啤酒质量监控的成本。戈斯特于1908年在《Biometrika》期刊上公布t检验,但因其老板认为其为商业机密而被迫使用笔名,统计学论文内容也跟酿酒无关。实际上,其他统计学家是知道戈斯特真实身份的。今日,它更常被应用于小样本判断的置信度。最常用t检验的情况有:大多数的t检定之统计量具有t = Z/k的形式,其中Z与k是已知资料的函数。Z通常被设计成对于对立假说有关的形式,而k是一个尺度参数使t服从于t分布。以单样本t检验为例,
Z
=
X
¯
/
(
σ
/
n
)
{displaystyle Z={bar {X}}/(sigma /{sqrt {n}})}
,其中
X
¯
{displaystyle {bar {X}}}
为样本平均数,
n
{displaystyle n}
为样本数,
σ
{displaystyle sigma }
为总体标准差。至于k在单样本t检验中为
σ
^
/
σ
{displaystyle {hat {sigma }}/sigma }
,其中
σ
^
{displaystyle {hat {sigma }}}
为样本的标准偏差。在符合零假说的条件下,t检定有以下前提:检验零假说为一群来自正态分配独立样本xi之总体期望值μ为μ0可利用以下统计量其中
i
=
1
…
n
{displaystyle i=1ldots n}
,
x
¯
=
∑
i
=
1
n
x
i
n
{displaystyle {overline {x}}={frac {sum _{i=1}^{n}x_{i}}{n}}}
为样本平均数,
s
=
∑
i
=
1
n
(
x
i
−
x
¯
)
2
n
−
1
{displaystyle s={sqrt {frac {sum _{i=1}^{n}(x_{i}-{overline {x}})^{2}}{n-1}}}}
为样本标准偏差,n为样本数。该统计量t在零假说:μ = μ0为真的条件下服从自由度为n − 1的t分布。配对样本t检验可视为单样本t检验的扩展,不过检验的对象由一群来自正态分配独立样本更改为二群配对样本之观测值之差。若二群配对样本x1i与x2i之差为di = x1i − x2i独立且来自正态分配,则di之总体期望值μ是否为μ0可利用以下统计量其中
i
=
1
…
n
{displaystyle i=1ldots n}
,
d
¯
=
∑
i
=
1
n
d
i
n
{displaystyle {overline {d}}={frac {sum _{i=1}^{n}d_{i}}{n}}}
为配对样本差值之平均数,
s
d
=
∑
i
=
1
n
(
d
i
−
d
¯
)
2
n
−
1
{displaystyle s_{d}={sqrt {frac {sum _{i=1}^{n}(d_{i}-{overline {d}})^{2}}{n-1}}}}
为配对样本差值之标准偏差,n为配对样本数。该统计量t在零假说:μ = μ0为真的条件下服从自由度为n − 1的t分布。若二群独立样本x1i与x2i具有相同之样本数n,并且彼此独立及来自二个方差相等的正态分配,则二群总体之期望值差μ1 - μ2是否为μ0可利用以下统计量其中
i
=
1
…
n
{displaystyle i=1ldots n}
,
x
¯
1
=
(
∑
i
=
1
n
x
1
i
)
/
n
{displaystyle {overline {x}}_{1}=(sum _{i=1}^{n}x_{1i})/n}
及
x
¯
2
=
(
∑
i
=
1
n
x
2
i
)
/
n
{displaystyle {overline {x}}_{2}=(sum _{i=1}^{n}x_{2i})/n}
为二群样本各自的平均数,
s
p
2
=
(
∑
i
=
1
n
(
x
1
i
−
x
¯
1
)
2
+
∑
i
=
1
n
(
x
2
i
−
x
¯
2
)
2
)
/
(
2
n
−
2
)
{displaystyle s_{p}^{2}=(sum _{i=1}^{n}(x_{1i}-{overline {x}}_{1})^{2}+sum _{i=1}^{n}(x_{2i}-{overline {x}}_{2})^{2})/(2n-2)}
为样本之共同方差。该统计量t在零假说:μ1 - μ2 = μ0为真的条件下服从自由度为2n − 2的t分布。若二群独立样本x1i与x2j具有不相同之样本数n1与n2,并且彼此独立及来自二个方差相等的正态分配,则二群总体之期望值之差μ1 - μ2是否为μ0可利用以下统计量其中
i
=
1
…
n
1
{displaystyle i=1ldots n_{1}}
,其中
j
=
1
…
n
2
{displaystyle j=1ldots n_{2}}
,
x
¯
1
=
(
∑
i
=
1
n
x
1
i
)
/
n
{displaystyle {overline {x}}_{1}=(sum _{i=1}^{n}x_{1i})/n}
及
x
¯
2
=
(
∑
i
=
1
n
x
2
i
)
/
n
{displaystyle {overline {x}}_{2}=(sum _{i=1}^{n}x_{2i})/n}
为二群样本各自的平均数,
s
p
2
=
(
∑
i
=
1
n
(
x
1
i
−
x
¯
1
)
2
+
∑
j
=
1
n
(
x
2
j
−
x
¯
2
)
2
)
/
(
n
1
+
n
2
−
2
)
{displaystyle s_{p}^{2}=(sum _{i=1}^{n}(x_{1i}-{overline {x}}_{1})^{2}+sum _{j=1}^{n}(x_{2j}-{overline {x}}_{2})^{2})/(n_{1}+n_{2}-2)}
为二群样本共同之方差。该统计量t在零假说:μ1 - μ2 = μ0为真的条件下服从自由度为n1 + n2 − 2的t分布。若二群独立样本x1i与x2j具有相等或不相同之样本数n1与n2,并且彼此独立及来自二个方差不相等的正态分配,则二群总体之期望值之差μ1 - μ2是否为μ0可利用以下统计量其中
i
=
1
…
n
1
{displaystyle i=1ldots n_{1}}
,其中
j
=
1
…
n
2
{displaystyle j=1ldots n_{2}}
,
x
¯
1
=
(
∑
i
=
1
n
1
x
1
i
)
/
n
1
{displaystyle {overline {x}}_{1}=(sum _{i=1}^{n_{1}}x_{1i})/n_{1}}
及
x
¯
2
=
(
∑
j
=
1
n
2
x
2
j
)
/
n
{displaystyle {overline {x}}_{2}=(sum _{j=1}^{n_{2}}x_{2j})/n}
为二群样本各自的平均数,
s
1
2
=
(
∑
i
=
1
n
(
x
1
i
−
x
¯
1
)
2
)
/
(
n
1
−
1
)
{displaystyle s_{1}^{2}=(sum _{i=1}^{n}(x_{1i}-{overline {x}}_{1})^{2})/(n_{1}-1)}
及
s
2
2
=
(
∑
j
=
1
n
(
x
2
j
−
x
¯
2
)
2
)
/
(
n
2
−
1
)
{displaystyle s_{2}^{2}=(sum _{j=1}^{n}(x_{2j}-{overline {x}}_{2})^{2})/(n_{2}-1)}
分别为二群样本之方差。该统计量t在零假说:μ1 - μ2 = μ0为真的条件下服从自由度为之t分布。这种方法又常称为Welch检验。在简单线性回归的模型其中xi,i = 1, ..., n为已知,α与β为未知系数,εi为残差独立且服从期望值0且方差σ2未知的正态分布,yi,i = 1, ..., n为观测值。我们可以检验回归系数(在此例即为回归式之斜率)β是否相等于特定的β0(通常使β0 = 0以检验xi对yi是否有关联)。令
α
^
{displaystyle {widehat {alpha }}}
与
β
^
{displaystyle {widehat {beta }}}
为最小二乘法之估计值,
S
E
α
^
{displaystyle SE_{widehat {alpha }}}
与
S
E
β
^
{displaystyle SE_{widehat {beta }}}
为最小二乘法估计值之标准误差,则在零假设为β = β0的情况下服从自由度为n − 2之t分布,其中由于
ε
^
i
=
y
i
−
y
^
i
=
y
i
−
(
α
^
+
β
^
x
i
)
{displaystyle {widehat {varepsilon }}_{i}=y_{i}-{widehat {y}}_{i}=y_{i}-({widehat {alpha }}+{widehat {beta }}x_{i})}
为残差(即估计误差),而
SSR
=
∑
i
=
1
n
ε
^
i
2
{displaystyle {text{SSR}}=sum _{i=1}^{n}{widehat {varepsilon }}_{i}^{;2}}
为残差之离均平方和,我们可改写t为另请参阅:方差齐性检验(F检验)大多数的试算表软件及统计软件,诸如QtiPlot、OpenOffice.org Calc、LibreOffice Calc、Microsoft Excel、SAS、SPSS、Stata、DAP、gretl、R、Python ()、PSPP、Minitab等,都可以进行t检验之运算。
相关
- 突变突变(英语:Mutation,即基因突变)在生物学上的含义,是指细胞中的遗传基因(通常指存在于细胞核中的去氧核糖核酸)发生的改变。它包括单个碱基改变所引起的点突变,或多个碱基的缺失、重
- 细胞因子细胞因子(英语:cytokine,又称细胞介素、细胞激素、细胞素、细胞活素),是一组蛋白质及多肽,在生物中用作信号蛋白。这些类似激素或神经递质的蛋白用作细胞间沟通的信号。细胞因子多
- 花粉病过敏性鼻炎,又称为鼻敏感、干草热、花粉热、花粉症或季节性过敏性鼻炎,是因为免疫系统受到空气中的过敏原影响而导致的鼻炎症状。征兆和病症包括流鼻涕或鼻塞、打喷嚏、眼睛的
- 骨盆腔发炎感染骨盆腔发炎(Pelvic inflammatory disease,PID)也称为盆腔炎,指的是女性子宫或输卵管受到感染的情形,有些定义也包含卵巢感染。骨盆腔发炎时常无明显的症状可能病征有下腹痛、阴道
- 黑胆汁体液学说(英语:Humorism,Humoralism或Humorae theory),起源于古希腊的医学理论,认为人体是由四种体液构成-血液、黏液、黄胆汁和黑胆汁,这四种体液对应到四种元素、四种气质,四种体液
- 应用数学应用数学(英语:Applied Mathematics)是以应用为目的的明确的数学理论和方法的总称,研究如何应用数学知识到其他范畴(尤其是科学)的数学分支,可以说是纯数学的相反,应用纯数学中的结
- 交叉链接交叉链接(英语:cross-link)为连接一个聚合体与其它聚合物的键。它们可以是共价键或是离子键。 “聚合物链”可以指合成聚合物或天然聚合物(如蛋白质)。当“交叉链接”用于合成聚
- 豚鼠系列《豚鼠》(日语:ギニーピッグ)是1980—90年代发行的六部争议性的日本恐怖电影,主要因前两部电影而闻名全球,因为制片人需要证明没有人真正受伤或被谋杀。制片人日野日出志的本意是
- 高登高登可以指:
- 统计分类统计分类是机器学习非常重要的一个组成部分,它的目标是根据已知样本的某些特征,判断一个新的样本属于哪种已知的样本类。分类是监督学习的一个实例,根据已知训练集提供的样本,通