瑞利-贝纳德对流

✍ dations ◷ 2025-10-08 11:51:15 #对流,流体动力学的不稳定性

瑞利-贝纳德对流(Rayleigh–Bénard convection)泛指一类自然对流,这类对流常常发生在从底部加热的一层流体表面上。发生对流的流体在表面形成的、具有规则形状的对流单体(英语:convection cells)叫做贝纳德原胞(Bénard cell)。因为在理论研究和实验上并具可行性,瑞利-贝纳德对流是被研究得最多的对流现象之一,而对流形成的图案也成为了在自组织的非线性系统中被测试得最细的一个例子,在物理学以及大气科学中被广泛用于各种环流和对流现象的研究中。

浮力和重力是形成瑞利-贝纳德对流的主要原因。位于底部的液体因为受热而密度较低,在其上浮过程中自发形成了规则的原胞图案。

瑞利-贝纳德对流的特征可以通过法国物理学家亨利·贝纳德(英语:Henri Bénard)在1900年完成的一个简单实验来观察。

实验利用了夹在两层平行板之间的一层液体(例如水)。首先,令上下两板的温度一致;夹在两板之间的液体会趋向热力学平衡;此平衡也是渐进稳定的。接着,稍稍升高底部的温度将导致热量通过液体向上传导;系统开始出现热传导的结构,线性的温度梯度被建立起来。此时,微观的无序运动会自发地在宏观尺度上变得有序,形成具有一定特征相关长度的贝纳德原胞。

在瑞利-贝纳德对流中,对流原胞的旋转是稳定的,顺时针和逆时针的方向交替出现:这是自发对称破缺的一个实例。贝纳德原胞处于亚稳态,较小的扰动不会改变原胞的旋转,而较大的则会有影响。这也是某种形式的迟滞现象的表现。

另外在模拟的过程中也发现,微观层面上具有决定性的定律,在宏观层面上却造成了非决定性的结果。对初态(英语:initial condition)进行微观层面上的扰动足以产生非决定性的宏观效应。某个微观扰动在宏观上产生的效应是无法计算的,这也是复杂系统(complex system)的特征之一(即蝴蝶效应)。如果进一步提升液体底部的温度,之前形成的湍流会变得混沌起来。

对流的贝纳德原胞趋向于形成规则的正六角棱柱,特别是在没有过分扰动的情况下;在某些实验条件下,原胞也会出现正四棱柱或螺旋状。

贝纳德原胞常出现在由表面张力驱动的对流中。一般来说,瑞利和皮尔森的分析(线性理论)的解导致了简并的出现。若考虑实际的系统,对流图案则取决于系统边界的形状。

由于液体的上表面和下表面之间有密度梯度,重力会使较冷的、密度较大的液体向下运动,而此运动会受到液体粘性阻尼的阻扰。两股作用力的平衡可以由一个无量纲的参数(瑞利数)来表示。此处的瑞利数定义如下:

其中

随着瑞利数的增大,重力在系统中的影响越大。系统在临界瑞利数1708时开始不稳定,出现对流原胞。

在某稳定系统中通过对线性化的方程进行微扰分析,可获得某些边界条件下的临界瑞利数。最简单情况的是两条自由的边界(即瑞利男爵在1916年解出的情况),得到的瑞利数 Ra = 27⁄4 π4 ≈ 657.51。对于刚性的底部和自由的顶部边界条件(对应着无盖的水壶),则有临界瑞利数 Ra = 1,100.65。

若液体上表面与空气接触,浮力和表面张力也会参与对流图案的形成。由于马伦哥尼效应,液体趋向于流向表面张力较强的区域。升高温度会降低液体的表面张力,导致液体从较热的区域流向较冷的区域。为了保持液面水平,较冷的液体将会下降,这也成为了对流原胞形成的驱动力之一。这一类由温度梯度驱动的特殊例子被称为热毛细对流(thermo-capillary convection)或贝纳德-马伦哥尼对流(Bénard–Marangoni convection)。

瑞利男爵是最早对瑞利-贝纳德对流进行成功的理论分析的科学家,他假设的边界条件是:在上下表面边界,流体速度在竖直方向上的分量为零,且没有温度干扰。这些假设令他的分析与亨利·贝纳德的实验相左。之后,皮尔森基于对表面张力的考虑,重新对贝纳德的实验进行了分析。虽然如此,现今用“瑞利-贝纳德对流”指代温度造成的效应,而用“贝纳德-马伦哥尼对流”指代表面张力造成的效应。Davis 和 Koschmieder 建议将瑞利-贝纳德对流正名为“皮尔森-贝纳德对流”。

相关

  • 河流美国的主要河流:
  • 基因拷贝DNA复制是指DNA双链在细胞分裂分裂间期进行的以一个亲代DNA分子为模板合成子代DNA链的过程。复制的结果是一条双链变成两条一样的双链(如果复制过程正常的话),每条双链都与原来
  • 4d5 5s12, 8, 18, 13, 1蒸气压第一:684.3 kJ·mol−1 第二:1560 kJ·mol−1 第三:2618 kJ·mol主条目:钼的同位素钼(Molybdenum)是一种化学元素,它的化学符号是Mo,它的原子序数
  • 不杀生无杀生(英语:Nonkilling)倡导人类社会不应该有杀生 ,不应该有杀生威胁,以及不该存有可助长杀生的环境。尽管在学术讨论上,无杀生主要探讨的是同人类有关的课题,但其实这个用词也可
  • 伦敦大剧院科利瑟姆剧院(London Coliseum)是伦敦市中心圣马丁巷的一座剧院,也是伦敦规模最大和最高档的剧院之一,开业于1904年12月24日,当时名为London Coliseum Theatre of Varieties,剧院
  • 冯其庸冯其庸(1924年2月3日-2017年1月22日),名迟,字其庸,以字行,号宽堂,江苏无锡人。以研究《红楼梦》著名于世,中国红楼梦学会会长、中国汉画学会前会长、中华炎黄文化研究会副会长、中国
  • 路思义亨利·温特斯·路思义(Henry Winters Luce,1868年9月24日-1941年),汉名路思义,是一位在19世纪末、20世纪初服务于中国华北齐鲁大学与燕京大学两校的美国传教士。路思义生长在美国
  • 奥斯定·贝亚奥斯定·贝亚枢机(德语:Augustin Bea, S.J.;1881年5月28日-1968年11月16日)是天主教圣经学者与耶稣会会士。教宗若望二十三世将他擢升为枢机及任命他为宗座基督徒合一促进秘书处
  • 殖产兴业殖产兴业(日语:殖産興業/しょくさんこうぎょう  */?)是日本在明治维新时期提出的三大政策之一。因彼时的明治政府欲与西方列强抗衡,便以"促进产业及资本主义的发展"作为推动国家
  • 吉田东洋吉田东洋(平假名:よしだとうよう,文化13年(1816年)-文久2年4月8日(1862年5月6日)),江戸时代后期,幕末政治家、土佐藩参政。父亲为土佐藩马回役吉田光四郎正清,母亲为吉田正幸之女。妻为