克喇末-克勒尼希关系

✍ dations ◷ 2025-10-12 04:02:48 #复分析

克喇末-克勒尼希关系式(英语:Kramers–Kronig relations)是数学上连系复面上半可析函数实数部和虚数部的公式。此关系式常用于物理系统的线性反应函数。物理上因果关系(系统反应必须在施力之后)意味着反应函数必须符合复面上半的可析性。反之,反应函数的可析性意味着相应物理系统的因果性。此关系式以拉尔夫·克勒尼希和汉斯·克喇末为名。

给定一复数变数 ω {\displaystyle \omega } 的复值函数 χ ( ω ) = χ 1 ( ω ) + i χ 2 ( ω ) {\displaystyle {\chi (\omega )}=\chi _{1}(\omega )+i\chi _{2}(\omega )} ,其中 χ 1 {\displaystyle \chi _{1}} χ 2 {\displaystyle \chi _{2}} 是实值函数。假设此函数 χ ( ω ) {\displaystyle \chi (\omega )} 在复数平面上半部可析,且当 | ω | {\displaystyle |\omega |} 趋向无限大时,它在上半平面趋于零的速度比 1 / | ω | {\displaystyle 1/|\omega |} 快或与之相等,那么 χ ( ω ) {\displaystyle \chi (\omega )} 满足以下关系:

其中 P {\displaystyle {\mathcal {P}}} 表示柯西主值。因此可析函数的实部和虚部并不独立:函数的一部分可以重建整个函数。

推导克喇末-克勒尼希关系式是留数定理的基本应用。对任何复面上半可析函数 χ ( ω ) {\displaystyle \chi (\omega ^{\prime })} 和实数 ω {\displaystyle \omega } 函数 χ ( ω ) ω ω {\displaystyle {\frac {\chi (\omega ^{\prime })}{\omega ^{\prime }-\omega }}} 在复面上半可析。留数定理得到对任何在复面上半的积分路径:

选用实轴上的路径、跳过任何实轴上极点、再以复面上半圆完成。把积分分解成三部分。其中半圆部分长度和 | ω | {\displaystyle |\omega |} 成正比,因此只要 χ ( ω ) {\displaystyle \chi (\omega ^{\prime })} 消失比 1 / ω {\displaystyle {1}/{\omega ^{\prime }}} 快,对半圆部分积分趋向零。因此积分只剩实轴上直线部和跳过极点的小半圆:

以上第二项留数定理的结果。重组后得到克喇末-克勒尼希关系式:

分母里的虚数 i {\displaystyle i} 意味者这是连系实部和虚部的公式。把 χ ( ω ) {\displaystyle \chi (\omega )} 分解成实部和虚部可轻易得到更早的公式。

可以将Kramers-Kronig关系应用于响应函数理论。物理上,响应函数 χ ( t t ) {\displaystyle \chi (t-t^{\prime })} 概括系统对在时间 t {\displaystyle t^{\prime }} 的作用力 F ( t ) {\displaystyle F(t^{\prime })} 在另一时间 t {\displaystyle t} 的反应 P ( t ) {\displaystyle P(t)}

因为系统不能在施力前有任何反应因此当 t > t {\displaystyle t^{\prime }>t} χ ( t t ) = 0 {\displaystyle \chi (t-t^{\prime })=0} 。可以证明这因果关系意味着 χ ( τ ) {\displaystyle \chi (\tau )} 的傅立叶变换 χ ( ω ) {\displaystyle \chi (\omega )} ω {\displaystyle \omega } 复面上半可析。另外如果我们施加系统一个远高于它最高共振频率的高频作用力,此时作用力转换太快而系统不能即时做出反应,因此 ω {\displaystyle \omega } 很大时, χ ( ω ) {\displaystyle \chi (\omega )} 会趋近于0。从这些物理考量,可知物理反应函数 χ ( ω ) {\displaystyle \chi (\omega )} 通常符合克喇末-克勒尼希关系式的前提条件。

反应函数 χ ( ω ) {\displaystyle \chi (\omega )} 的虚部和作用力异相。它概括系统如何消散能量。因此利用克喇末-克勒尼希关系,我们可以透过观察系统能量消耗而得到它对作用力的同相(不做功)反应,反之亦然。

上述函数的积分路径是从 {\displaystyle -\infty } {\displaystyle \infty } ,其中出现了负频率。幸运的是,多数系统中,正频响应决定了负频响应,这是因为 χ ( ω ) {\displaystyle \chi (\omega )} 是实数变量 χ ( t t ) {\displaystyle \chi (t-t')} 的傅里叶变换,根据对实数进行傅里叶变换的性质, χ ( ω ) = χ ( ω ) {\displaystyle \chi (-\omega )=\chi ^{*}(\omega )} χ 1 ( ω ) {\displaystyle \chi _{1}(\omega )} 是频率 ω {\displaystyle \omega } 的偶函数,而 χ 2 ( ω ) {\displaystyle \chi _{2}(\omega )} ω {\displaystyle \omega } 的奇函数。

根据该性质,积分可以从正负无穷区间约化为 [ 0 , ) {\displaystyle [0,\infty )} 的区间上。考虑实部 χ 1 ( ω ) {\displaystyle \chi _{1}(\omega )} 的第一个关系,积分函数上下同乘 ω + ω {\displaystyle \omega '+\omega } 可得:

由于 χ 2 ( ω ) {\displaystyle \chi _{2}(\omega )} 为奇函数,第二项为零,剩下的部分为

类似的推导亦可用于虚部:

该 Kramers-Kronig 关系在物理响应函数上的很有用处。

相关

  • 镁的同位素镁(原子量:24.3050(6))共有22个同位素,其中有3个是稳定的。备注:画上#号的数据代表没有经过实验的证明,只是理论推测而已,而用括号括起来的代表数据不确定性。
  • 林学钰林学钰(1937年3月6日-),中国水文地质和环境水文地质学家。出生于上海。籍贯福建福州。1957年毕业于长春地质学院水文地质及工程地质系。1997年当选为中国科学院院士。曾任华东师
  • 新加坡国会政府:   人民行动党 (82)最大反对党:   工人党 (9)其他:新加坡国会(英语:Parliament of Singapore;马来语:Parlimen Singapura)是新加坡的立法机构,采用一院制。1965年,新加坡独立建
  • 海蒂·克鲁姆海蒂·克鲁姆(德语:Heidi Klum,1973年6月1日-),德国裔的美国超级名模、节目主持人、电视制作人和时装设计师,有时为歌手。她是《伸展台計划》及《德国超级名模生死斗》的主持人和评
  • 左旋多巴L-多巴(英语:L-DOPA,全称3,4-二羟苯丙氨酸)是酪氨酸经酪氨酸羟化酶的作用下羟化产生的一种氧化产物,具有儿茶酚羟基,可进一步生成另外一些有生物活性的物质:L-多巴在酪氨酸酶的作用
  • 棉纱纱线是一种很长的纤维,用于纺织、缝纫、编织、制绳等。纱线可以从多种天然或合成纤维制成,比如棉、丝绸、竹、麻、大豆,羊、骆驼、猫、狗、狐、兔等动物的毛,以及各种人造纤维。
  • 儿童性诱拐儿童性诱拐指的是犯罪者以友善态度或利诱等方式消除儿童的戒心,在取得后者信任后诱使或强迫其发生性行为。在许多案例中,这些儿童除了遭到性剥削外,还被迫卖淫或制造儿童色情产
  • Big Hit EntertainmentBig Hit Entertainment(韩语:빅히트엔터테인먼트)是一间韩国经纪娱乐公司。2005年由韩国知名音乐制作人兼作曲家Hitman Bang(本名:房时爀)于韩国创办,主要从事音乐制作、专辑发行、
  • 澄海区坐标:23°28′N 116°45′E / 23.467°N 116.750°E / 23.467; 116.750澄海区(官方音译:Chenghai,传统外文:Tenghai)是中国广东省汕头市的一个市辖区。位于南海之滨的广东东南部,潮
  • 过三氧化氢过三氧化氢也称为“三氧化氢”或“三氧化二氢”,其化学式为“H2O3”或“HOOOH”,是氢元素的氧化物。他是一种不稳定的化合物,在水溶液中会分解为水和单线态氧:上述反应的逆反应(