算术基本定理

✍ dations ◷ 2025-07-04 02:51:23 #数论,数学定理

算术基本定理,又称为正整数的唯一分解定理,即:每个大于1的自然数,要么本身就是质数,要么可以写为2个或以上的质数的积,而且这些质因子按大小排列之后,写法仅有一种方式。

例如: 6936 = 2 3 × 3 × 17 2 {\displaystyle 6936=2^{3}\times 3\times 17^{2}} 整除。所以 p | b {\displaystyle p|b} 的最小性矛盾!

因此唯一性得证。

在一般的数域中,并不存在相应的定理;事实上,在虚二次域 Q ( D ) ( D N ) {\displaystyle \mathbb {Q} ({\sqrt {-D}})\quad (D\in \mathbb {N} )} 之中,只有少数几个能满足,最大的一个 D {\displaystyle D} D = 163 {\displaystyle D=163} 。例如, 6 {\displaystyle 6} 可以以两种方式在 Z {\displaystyle \mathbb {Z} } 中表成整数乘积: 2 × 3 {\displaystyle 2\times 3} ( 1 + 5 ) ( 1 5 ) {\displaystyle (1+{\sqrt {-5}})(1-{\sqrt {-5}})} 。同样的,在分圆整数中一般也不存在唯一分解性,而这恰恰是人们在证明费马大定理时所遇到的陷阱之一。

欧几里得在普通整数 Z {\displaystyle \mathbb {Z} } 中证明了算术基本定理──每个整数可唯一地分解为素数的乘积,高斯则在复整数 Z {\displaystyle \mathbb {Z} } 中得出并证明,只要不计四个可逆元素 ( ± 1 , ± i ) {\displaystyle (\pm 1,\pm i)} 之作用,那么这个唯一分解定理在 Z {\displaystyle \mathbb {Z} } 也成立。高斯还指出,包括费马大定理在内的普通素数的许多定理都可能扩大到复数域。

对于二次方程: a x 2 + b x + c = 0 ( a 0 ) {\displaystyle ax^{2}+bx+c=0\qquad \left(a\neq 0\right)} ,它的根可以表示为: x 1 , 2 = b ± b 2 4 a c   2 a {\displaystyle x_{1,2}={\frac {-b\pm {\sqrt {b^{2}-4ac\ }}}{2a}}}

因为负数不能开平方, b 2 4 a c {\displaystyle b^{2}-4ac} 的符号就很重要,如果为正,有两个根;如果为0,只有一个根;如果为负,没有实根。欧拉的素数公式: f ( x ) = x 2 + x + 41 ( a 0 ) {\displaystyle f(x)=x^{2}+x+41\qquad \left(a\neq 0\right)} b 2 4 a c = 1 164 = 163 {\displaystyle b^{2}-4ac=1-164=-163} 两个复数解为: x 1 , 2 = 1 ± 163 i 2 {\displaystyle x_{1,2}={\frac {-1\pm {\sqrt {163}}i}{2}}}

a + b d {\displaystyle a+b{\sqrt{-d}}} 哪个 d {\displaystyle d} 值可以得到唯一分解定理? d = 1 , 2 , 3 {\displaystyle d=1,2,3} 皆可得到定理,但当 d = 5 {\displaystyle d=5} 时不能。因为在这个数系中6这个数有两种形式的因子分解(分解至不可分约的情形)。 6 = 2 × 3 {\displaystyle 6=2\times 3} 6 = ( 1 + 5 ) ( 1 5 ) {\displaystyle 6=(1+{\sqrt {-5}})(1-{\sqrt {-5}})} 。在高斯时代,已知有9个 d {\displaystyle d} 使得 a + b d {\displaystyle a+b{\sqrt{-d}}} 所产生的数有唯一因子分解( a {\displaystyle a} b {\displaystyle b} 如上面指出那样取值)。 d = 1 , 2 , 3 , 7 , 11 , 19 , 43 , 67 , 163 {\displaystyle d=1,2,3,7,11,19,43,67,163} 高斯认为 d {\displaystyle d} 的数量不会超过10个,但是没有人能够证明。1952年,业余数学家,退休的瑞士工程师库尔特·黑格纳(英语:Kurt Heegner)(Kurt Heegner)发表了他的证明,声称第10个高斯类数不存在。但是没有人相信他。世界又等待了15年之后才知道这个定理:麻省理工学院的斯塔克(Harold Stark)和剑桥大学的阿兰贝克(AlanBaker)独立用不同方法证明了第10个 d {\displaystyle d} 值不存在。两个人重新检查了希格内尔的工作,发现他的证明是正确的。为了纪念长期被忽视的希格内尔,上述的9个数被称为黑格纳数,一些曲线上的点被命名为希格内尔点。参见《数学新的黄金时代》和其它数学书籍。

相关

  • FeBrsub3/sub溴化铁,化学式为FeBr3,棕黄色或深红棕色固体。易溶于水,溶于水略显酸性,其水溶液可以结晶出暗绿色的FeBr3·6H2O。可溶于给电子溶剂(如乙醚、乙醇)中。固体溴化铁具有和氯化铁相似
  • UBC银色与金色科罗拉多大学博尔德分校(英语:University of Colorado Boulder;常用缩写:CU Boulder)是科罗拉多大学系统(英语:University of Colorado)的旗舰校。它成立于1876年,比科罗拉
  • 竞合竞合可以指:
  • 氯酸氯酸,化学式为HClO3,是氯的含氧酸之一,其中氯的氧化态为+5。它具强酸性(pa≈−1)及强氧化性,可用于制取多种氯酸盐。它可由氯酸钡与硫酸反应,并滤去硫酸钡沉淀得到:或用次氯酸加热歧
  • 三硫化钼三硫化钼是一种无机化合物,化学式为MoS3。将七钼酸铵的稀硫酸(0.2 mol/L)溶液和硫化钠的水溶液在搅拌下快速混合,可以得到非晶态的三硫化钼。将三氧化钼溶于溶解在氢氧化钠中,得
  • 史密斯先生《史密斯先生》(英语:)是一部2007年美国动作喜剧片,由克里夫·欧文、莫妮卡·贝露琪、保罗·贾麦提主演,迈克尔·戴维斯编导,于2007年11月2日发行,这部电影以高超的对战与神准的用
  • 于都斤于都斤(古突厥文:,"于都斤山"; , "于都斤大地")是突厥神话和腾格里信仰传说中的一座都城的名字。“于都斤”一词在突厥语中意思是“大地母亲”。根据突厥的传说,Yer-sub(英语:Yer-s
  • 经超经超(1986年4月15日-),中国男演员,出生于上海,大四时接拍《跟我的前妻谈恋爱》进入演艺圈。
  • 环球城市影业诉任天堂案环球城市影业诉任天堂案(英语:)是一个由美国地方法院审理的著名案件。环球影城称,任天堂的电子游戏《大金刚》中的大金刚角色商标侵权,通用声称为自己的情节和人物,任天堂则认为金
  • 北朝鲜的孩子《北朝鲜的孩子》(英语:,韩语:북조선, 비밀국가의 자식들)是英国纪录片导演卡拉·加拉蓓蒂安(Carla Garapedian)导演的讲述朝鲜民主主义人民共和国儿童生存状况的纪录片。内容多取