彼得-魏尔定理

✍ dations ◷ 2025-07-10 22:25:30 #群表示论,调和分析,拓扑群

彼得-魏尔定理(英语:Peter–Weyl theorem)是调和分析和群表示论中的一组重要定理,于1927年由赫尔曼·魏尔和他的学生弗里茨·彼得(英语:Fritz_Peter)证明。该定理刻画了紧群不可约表示的完备性,可以视作有限群表示理论中弗罗贝尼乌斯定理的推广。定理分为三部分:第一部分指出,紧群 G {\displaystyle G} 的所有有限维不可约酉表示(英语:Unitary representation)的矩阵元(英语:Matrix_coefficient),在 G {\displaystyle G} 上所有复值连续群函数构成、配备了一致范数(英语:Uniform_norm)的空间中稠密。第二部分指出, G {\displaystyle G} 在任何一个可分希尔伯特空间上的酉表示都完全可约。第三部分断言, G {\displaystyle G} 的所有有限维不可约酉表示的矩阵元构成了 G {\displaystyle G} 上平方可积的复值函数空间的一组标准正交基。

20世纪20年代,魏尔在研究广义相对论的数学基础时,对连续群的表示理论产生了兴趣。在研究中,他试图将有限群表示理论中的弗罗贝尼乌斯定理(即有限群正则表示(英语:Regular representation)可以约化为其所有不可约表示的直和)推广到连续群,尤其是特殊线性群。与此同时,伊赛·舒尔(英语:Issai_Schur)等其它数学家的工作也为研究群表示提供了更强有力的工具。1927年,魏尔在其学生彼得的协助下证明了本定理,断言了紧群不可约表示的完备性。值得注意的是,魏尔在证明中不必要地假定了群运算的可微性,因为在当时他并不知道如何在除紧李群之外的一般紧群上定义群作用下不变的积分。这一问题直至1933年才由阿弗雷德·哈尔(英语:Alfréd Haar)建立的哈尔测度理论彻底解决。

彼得-魏尔定理在抽象调和分析理论中扮演了重要的角色。正如本尼迪克特·格罗斯(英语:Benedict Gross)所述:“现代调和分析发轫于20世纪20年代......她诞生于1927年,而彼得和魏尔的论文是她的出生证明。”此外,冯诺依曼于1933年利用该定理的一个推论,解决了紧群版本的希尔伯特第五问题。

G {\displaystyle G} 为紧群, C ( G ) {\displaystyle C(G)} G {\displaystyle G} 上所有复值连续函数构成、配备了一致范数的线性空间, Δ {\displaystyle \Delta } G {\displaystyle G} 的所有有限维不可约酉表示的矩阵元张成的线性空间,则 Δ {\displaystyle \Delta } C ( G ) {\displaystyle C(G)} 中稠密。

χ C ( G ) {\displaystyle \forall \chi \in C(G)} ,可以定义卷积算子 T χ : L 2 ( G ) L 2 ( G ) {\displaystyle T_{\chi }:L^{2}(G)\to L^{2}(G)}

利用阿尔泽拉引理可以证明,该算子是 L 2 ( G ) {\displaystyle L^{2}(G)} 上的紧算子。

f C ( G ) {\displaystyle f\in C(G)} ,由 G {\displaystyle G} 的紧性可知 f {\displaystyle f} G {\displaystyle G} 上一致连续。即对任意 ϵ > 0 {\displaystyle \epsilon >0} ,存在群单位元 e {\displaystyle e} 的邻域的 U {\displaystyle U} ,使得任意 u , v G , u v 1 U {\displaystyle u,v\in G,uv^{-1}\in U} ,都有 | f ( v ) f ( u ) | < ϵ 2 {\displaystyle |f(v)-f(u)|<{\frac {\epsilon }{2}}} 。不失一般性,可以假设 U 1 = U {\displaystyle U^{-1}=U}

χ {\displaystyle \chi } 是定义在 G {\displaystyle G} 上,且支集 s u p p ( χ ) U {\displaystyle supp(\chi )\subset U} 的连续实值函数。由乌雷松引理,这样的函数总是存在的。不失一般性,可以假设 χ ( v ) = χ ( v 1 ) {\displaystyle \chi (v)=\chi (v^{-1})} d g χ ( g ) = 1 {\displaystyle \int \mathrm {d} g\chi (g)=1} ,因为对任意 χ {\displaystyle \chi } 总可以通过如下的变换使其满足上述条件:

此时,可以证明 T χ {\displaystyle T_{\chi }} L 2 ( G ) {\displaystyle L^{2}(G)} 上的紧自伴算子。利用紧自伴算子的谱定理,可知:

其中 V λ i {\displaystyle V_{\lambda _{i}}} 为算子 T χ {\displaystyle T_{\chi }} 本征值为 λ i 0 {\displaystyle \lambda _{i}\neq 0} 的有限维本征子空间, V 0 {\displaystyle V_{0}} T χ {\displaystyle T_{\chi }} 的核。因此, T χ ( f ) I m ( T χ ) = C ( G ) V 0 {\displaystyle T_{\chi }(f)\in Im(T_{\chi })=C(G)-V_{0}} 可以写成一列绝对一致收敛的函数项级数和:

故而存在 N {\displaystyle N} ,使得 v G {\displaystyle \forall v\in G} | T χ ( f ) ( v ) i = 1 N f i ( v ) | < ϵ 2 {\displaystyle |T_{\chi }(f)(v)-\sum _{i=1}^{N}f_{i}(v)|<{\frac {\epsilon }{2}}}

另一方面:

因此:

L ( g ) : C ( G ) C ( G ) {\displaystyle L(g):C(G)\to C(G)} G {\displaystyle G} 的左正则表示,不难证明算子 L ( g ) {\displaystyle L(g)} T χ {\displaystyle T_{\chi }} 对易,因此本征子空间 V λ i {\displaystyle V_{\lambda _{i}}} 也是左正则表示的有限维不变子空间。由于有限维表示完全可约, V λ i {\displaystyle V_{\lambda _{i}}} 可以写成 G {\displaystyle G} 的有限维不可约酉表示的表示空间的直和。在每个这样的空间 X {\displaystyle X} 上:

其中 r i j {\displaystyle r_{ij}} 是该不可约表示的矩阵元。这意味着 V λ i Δ {\displaystyle V_{\lambda _{i}}\subset \Delta } ,进而 i = 1 N f i ( v ) Δ {\displaystyle \sum _{i=1}^{N}f_{i}(v)\in \Delta } 。总之,对于任意 f C ( G ) {\displaystyle f\in C(G)} ϵ > 0 {\displaystyle \epsilon >0} ,都存在 Δ {\displaystyle \Delta } 中的某个元素,使得其与 f {\displaystyle f} 之差的一致范数小于 ϵ {\displaystyle \epsilon } 。这意味着 Δ {\displaystyle \Delta } C ( G ) {\displaystyle C(G)} 中稠密。

以上证明的思路来自彼得和魏尔的原始论文。实际上,利用格尔范德-赖科夫定理(英语:Gelfand–Raikov theorem)和魏尔斯特拉斯逼近定理亦可直接推出本定理。

R {\displaystyle R} 是紧群 G {\displaystyle G} 在可分希尔伯特空间 H {\displaystyle H} 上的任意酉表示,则 H {\displaystyle H} 可分解为 R {\displaystyle R} 的有限维不变子空间的直和,其中每个子空间都承载了 G {\displaystyle G} 的不可约表示。

, {\displaystyle \langle ,\rangle } H {\displaystyle H} 上定义的内积。对任意 u H , | | u | | = 1 {\displaystyle u\in H,||u||=1} ,定义算子 T u : H H {\displaystyle T_{u}:H\to H}

可证 T u {\displaystyle T_{u}} H {\displaystyle H} 上的非零紧自伴算子,且与 R ( g ) {\displaystyle R(g)} 对易。利用紧自伴算子的谱定理,可对 H {\displaystyle H} 作如下分解:

其中, T u {\displaystyle T_{u}} 的每个有限维特征子空间 H λ i {\displaystyle H_{\lambda _{i}}} 又是群表示 R {\displaystyle R} 的不变子空间,故其可进一步分解为承载 G {\displaystyle G} 的有限维不可约表示的子空间的直和。

H {\displaystyle H'} H {\displaystyle H} 中可以分解为承载有限维不可约表示的子空间的直和的最大子空间, H {\displaystyle H'} H {\displaystyle H''} 的正交补。(由佐恩引理,这样做是合法的。)显然 H {\displaystyle H''} 也是 R {\displaystyle R} 的不变子空间,若 H {\displaystyle H''} 不是零空间, R {\displaystyle R} H {\displaystyle H''} 上的限制也是 G {\displaystyle G} 的酉表示。因此,将以

相关

  • 美沙拉嗪美沙拉嗪(英语:Mesalazine,又名美沙拉秦,5'-氨基水杨酸(5-ASA)),是一种氨基水杨酸类抗炎药,用于治疗炎性肠病,包括溃疡性结肠炎,直肠炎,克罗恩病等。美沙拉嗪以口服形式服用缓解克罗恩病
  • 国宾影城国宾影城、国宾大戏院(英语:Ambassador Theatres)为台湾的连锁电影院。国宾影城旗下拥有影城数为国内非外资戏院第一,成立于2001年,结合国内最富盛名的国宾大戏院、六福开发、福
  • Berlin柏林(德语:Berlin,德语发音:.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida Sans Unicode","Code2000","Gentium","Gent
  • 卡尔大公卡尔·路德维希大公(Archduke Karl Ludwig of Austria,1833年7月30日-1896年5月19日),奥匈帝国皇帝弗朗茨·约瑟夫一世之弟。侄子皇储鲁道夫死后,其长子弗朗茨·斐迪南大公成为皇
  • 弗雷泽岛弗雷泽岛(Fraser Island),或译福瑞沙岛、芬瑟岛,是世界上最大的纯砂岛,长122公里,总面积有1630平方公里,移动的沙丘、彩色砂石悬崖、雨林植物、清澈的海湾和白色海滩构成了该岛独一
  • 2019冠状病毒病天津市疫情2019冠状病毒病天津市疫情,介绍在2019冠状病毒病疫情中,在中华人民共和国天津市发生的情况。截至2020年5月2日,天津市累计报告新型冠状病毒肺炎确诊病例190例(境外输入病例54例),
  • CXCR42K03, 2K04, 2K05, 3ODU, 3OE0, 3OE6, 3OE8, 3OE9· G-protein coupled receptor activity · protein binding · coreceptor activity · C-X-C chemokine receptor ac
  • 长谷川千代乃长谷川千代乃(日语:長谷川 チヨノ/はせがわ チヨノ ,日语:長谷川チヨノ,1896年11月20日-2011年12月2日),日本长寿女性,超级人瑞,去世时享寿115岁12天。在2010年5月2日知念蒲去世后,她成
  • 豆腐糕豆腐糕(又名唐芙蓉)是琉球料理的一种,即琉球式的腐乳。豆腐糕是利用岛豆腐(日语:島豆腐)加上米麹(日语:米麹)、红麹、泡盛发酵而成的食品。源于明朝时期由中国传入琉球国的豆腐乳。
  • 全印学生联合会全印学生联合会(英语:All India Students Federation,缩写为AISF)是印度共产党的下属学生组织。该组织成立于1936年8月12日。该组织的主席是Syed Valihulla Kadhri,书记是Vishwaj