彼得-魏尔定理

✍ dations ◷ 2025-07-11 00:19:18 #群表示论,调和分析,拓扑群

彼得-魏尔定理(英语:Peter–Weyl theorem)是调和分析和群表示论中的一组重要定理,于1927年由赫尔曼·魏尔和他的学生弗里茨·彼得(英语:Fritz_Peter)证明。该定理刻画了紧群不可约表示的完备性,可以视作有限群表示理论中弗罗贝尼乌斯定理的推广。定理分为三部分:第一部分指出,紧群 G {\displaystyle G} 的所有有限维不可约酉表示(英语:Unitary representation)的矩阵元(英语:Matrix_coefficient),在 G {\displaystyle G} 上所有复值连续群函数构成、配备了一致范数(英语:Uniform_norm)的空间中稠密。第二部分指出, G {\displaystyle G} 在任何一个可分希尔伯特空间上的酉表示都完全可约。第三部分断言, G {\displaystyle G} 的所有有限维不可约酉表示的矩阵元构成了 G {\displaystyle G} 上平方可积的复值函数空间的一组标准正交基。

20世纪20年代,魏尔在研究广义相对论的数学基础时,对连续群的表示理论产生了兴趣。在研究中,他试图将有限群表示理论中的弗罗贝尼乌斯定理(即有限群正则表示(英语:Regular representation)可以约化为其所有不可约表示的直和)推广到连续群,尤其是特殊线性群。与此同时,伊赛·舒尔(英语:Issai_Schur)等其它数学家的工作也为研究群表示提供了更强有力的工具。1927年,魏尔在其学生彼得的协助下证明了本定理,断言了紧群不可约表示的完备性。值得注意的是,魏尔在证明中不必要地假定了群运算的可微性,因为在当时他并不知道如何在除紧李群之外的一般紧群上定义群作用下不变的积分。这一问题直至1933年才由阿弗雷德·哈尔(英语:Alfréd Haar)建立的哈尔测度理论彻底解决。

彼得-魏尔定理在抽象调和分析理论中扮演了重要的角色。正如本尼迪克特·格罗斯(英语:Benedict Gross)所述:“现代调和分析发轫于20世纪20年代......她诞生于1927年,而彼得和魏尔的论文是她的出生证明。”此外,冯诺依曼于1933年利用该定理的一个推论,解决了紧群版本的希尔伯特第五问题。

G {\displaystyle G} 为紧群, C ( G ) {\displaystyle C(G)} G {\displaystyle G} 上所有复值连续函数构成、配备了一致范数的线性空间, Δ {\displaystyle \Delta } G {\displaystyle G} 的所有有限维不可约酉表示的矩阵元张成的线性空间,则 Δ {\displaystyle \Delta } C ( G ) {\displaystyle C(G)} 中稠密。

χ C ( G ) {\displaystyle \forall \chi \in C(G)} ,可以定义卷积算子 T χ : L 2 ( G ) L 2 ( G ) {\displaystyle T_{\chi }:L^{2}(G)\to L^{2}(G)}

利用阿尔泽拉引理可以证明,该算子是 L 2 ( G ) {\displaystyle L^{2}(G)} 上的紧算子。

f C ( G ) {\displaystyle f\in C(G)} ,由 G {\displaystyle G} 的紧性可知 f {\displaystyle f} G {\displaystyle G} 上一致连续。即对任意 ϵ > 0 {\displaystyle \epsilon >0} ,存在群单位元 e {\displaystyle e} 的邻域的 U {\displaystyle U} ,使得任意 u , v G , u v 1 U {\displaystyle u,v\in G,uv^{-1}\in U} ,都有 | f ( v ) f ( u ) | < ϵ 2 {\displaystyle |f(v)-f(u)|<{\frac {\epsilon }{2}}} 。不失一般性,可以假设 U 1 = U {\displaystyle U^{-1}=U}

χ {\displaystyle \chi } 是定义在 G {\displaystyle G} 上,且支集 s u p p ( χ ) U {\displaystyle supp(\chi )\subset U} 的连续实值函数。由乌雷松引理,这样的函数总是存在的。不失一般性,可以假设 χ ( v ) = χ ( v 1 ) {\displaystyle \chi (v)=\chi (v^{-1})} d g χ ( g ) = 1 {\displaystyle \int \mathrm {d} g\chi (g)=1} ,因为对任意 χ {\displaystyle \chi } 总可以通过如下的变换使其满足上述条件:

此时,可以证明 T χ {\displaystyle T_{\chi }} L 2 ( G ) {\displaystyle L^{2}(G)} 上的紧自伴算子。利用紧自伴算子的谱定理,可知:

其中 V λ i {\displaystyle V_{\lambda _{i}}} 为算子 T χ {\displaystyle T_{\chi }} 本征值为 λ i 0 {\displaystyle \lambda _{i}\neq 0} 的有限维本征子空间, V 0 {\displaystyle V_{0}} T χ {\displaystyle T_{\chi }} 的核。因此, T χ ( f ) I m ( T χ ) = C ( G ) V 0 {\displaystyle T_{\chi }(f)\in Im(T_{\chi })=C(G)-V_{0}} 可以写成一列绝对一致收敛的函数项级数和:

故而存在 N {\displaystyle N} ,使得 v G {\displaystyle \forall v\in G} | T χ ( f ) ( v ) i = 1 N f i ( v ) | < ϵ 2 {\displaystyle |T_{\chi }(f)(v)-\sum _{i=1}^{N}f_{i}(v)|<{\frac {\epsilon }{2}}}

另一方面:

因此:

L ( g ) : C ( G ) C ( G ) {\displaystyle L(g):C(G)\to C(G)} G {\displaystyle G} 的左正则表示,不难证明算子 L ( g ) {\displaystyle L(g)} T χ {\displaystyle T_{\chi }} 对易,因此本征子空间 V λ i {\displaystyle V_{\lambda _{i}}} 也是左正则表示的有限维不变子空间。由于有限维表示完全可约, V λ i {\displaystyle V_{\lambda _{i}}} 可以写成 G {\displaystyle G} 的有限维不可约酉表示的表示空间的直和。在每个这样的空间 X {\displaystyle X} 上:

其中 r i j {\displaystyle r_{ij}} 是该不可约表示的矩阵元。这意味着 V λ i Δ {\displaystyle V_{\lambda _{i}}\subset \Delta } ,进而 i = 1 N f i ( v ) Δ {\displaystyle \sum _{i=1}^{N}f_{i}(v)\in \Delta } 。总之,对于任意 f C ( G ) {\displaystyle f\in C(G)} ϵ > 0 {\displaystyle \epsilon >0} ,都存在 Δ {\displaystyle \Delta } 中的某个元素,使得其与 f {\displaystyle f} 之差的一致范数小于 ϵ {\displaystyle \epsilon } 。这意味着 Δ {\displaystyle \Delta } C ( G ) {\displaystyle C(G)} 中稠密。

以上证明的思路来自彼得和魏尔的原始论文。实际上,利用格尔范德-赖科夫定理(英语:Gelfand–Raikov theorem)和魏尔斯特拉斯逼近定理亦可直接推出本定理。

R {\displaystyle R} 是紧群 G {\displaystyle G} 在可分希尔伯特空间 H {\displaystyle H} 上的任意酉表示,则 H {\displaystyle H} 可分解为 R {\displaystyle R} 的有限维不变子空间的直和,其中每个子空间都承载了 G {\displaystyle G} 的不可约表示。

, {\displaystyle \langle ,\rangle } H {\displaystyle H} 上定义的内积。对任意 u H , | | u | | = 1 {\displaystyle u\in H,||u||=1} ,定义算子 T u : H H {\displaystyle T_{u}:H\to H}

可证 T u {\displaystyle T_{u}} H {\displaystyle H} 上的非零紧自伴算子,且与 R ( g ) {\displaystyle R(g)} 对易。利用紧自伴算子的谱定理,可对 H {\displaystyle H} 作如下分解:

其中, T u {\displaystyle T_{u}} 的每个有限维特征子空间 H λ i {\displaystyle H_{\lambda _{i}}} 又是群表示 R {\displaystyle R} 的不变子空间,故其可进一步分解为承载 G {\displaystyle G} 的有限维不可约表示的子空间的直和。

H {\displaystyle H'} H {\displaystyle H} 中可以分解为承载有限维不可约表示的子空间的直和的最大子空间, H {\displaystyle H'} H {\displaystyle H''} 的正交补。(由佐恩引理,这样做是合法的。)显然 H {\displaystyle H''} 也是 R {\displaystyle R} 的不变子空间,若 H {\displaystyle H''} 不是零空间, R {\displaystyle R} H {\displaystyle H''} 上的限制也是 G {\displaystyle G} 的酉表示。因此,将以

相关

  • 菲律宾海板块隐没带 Alps 造山带 30→ 相对于非洲板块的移动速度(mm/Y)菲律宾海板块(英语:Philippine Sea Plate),是位于西太平洋菲律宾海的一个大洋板块,其形状略呈菱形,面积在30个主要板块中排
  • 错把太太当帽子的人《错把太太当帽子的人》(英语:The Man Who Mistook His Wife for a Hat and Other Clinical Tales,又译《错把妻子当帽子 》), 错把太太当帽子的人与诊疗故事是1985年发行的书,内
  • 康西诺·孔奇尼康西诺·孔奇尼,昂克尔侯爵(法语:Concino Concini, Count della Penna, Marquis and Maréchal d'Ancre,1575年?月?日-1617年4月24日),意大利冒险家和政治家。路易十三时的法国首席大
  • 松球鱼科松球鱼科(学名:)又称松球鱼科是辐鳍鱼纲金眼鲷目的其中一科。松球鱼科下分2个属,如下:
  • 约翰·P·格勒青格约翰·P·格勒青格(John P. Grotzinger)是加州理工学院的一名地质学教授。主要教授地理学与行星科学,他的研究主要集中于生命与环境中的化学与物理之间的相互作用。他是一名活
  • 龙介属见内文龙介属(学名:)是龙介虫科下的一属环节动物,也是本科的模式属。生活在海洋中。龙介虫的体管很长,切面呈圆形,由粗渐渐变细。有的稍微弯曲,有的则卷曲地非常明显,内壁相对而言较
  • Google涂鸦列表Google Doodle(Google徽标)是艺术性的Google商标。从1998年第一个火人节Doodle开始,Google一直在设计各种Doodle,大多是为了庆祝节日、纪念日以及著名艺术家、先驱者和科学家的
  • 嵩焘滩嵩焘滩(越南语:Bãi Ốc Tai Voi/.mw-parser-output .han-nom{font-family:"Nom Na Tong","Han-Nom Gothic","Han-Nom Ming","HAN NOM A","HAN NOM B","Ming-Lt-HKSCS-UNI-H","
  • 土耳其电影列表本列表为土耳其出品的电影资讯。
  • 朱偰朱偰(1907年4月15日-1968年7月15日),字伯商,浙江海盐人,经济学家、文物保护专家。朱偰幼承家学,1923年入北京大学预科,1925年入北京大学本科学政治,1929年入德国柏林大学,1932年获经济