偏最小二乘回归

✍ dations ◷ 2025-10-12 06:10:03 #偏最小二乘回归
偏最小二乘回归(英语:Partial least squares regression, PLS回归)是一种统计学方法,与主成分回归有关系,但不是寻找响应和独立变量之间最小方差的超平面,而是通过投影预测变量和观测变量到一个新空间来寻找一个线性回归模型。因为数据X和Y都会投影到新空间,PLS系列的方法都被称为双线性因子模型。当Y是分类数据时有“偏最小二乘判别分析(英语:Partial least squares Discriminant Analysis, PLS-DA)”,是PLS的一个变形。偏最小二乘用于查找两个矩阵(X和Y)的基本关系,即一个在这两个空间对协方差结构建模的隐变量方法。偏最小二乘模型将试图找到X空间的多维方向来解释Y空间方差最大的多维方向。偏最小二乘回归特别适合当预测矩阵比观测的有更多变量,以及X的值中有多重共线性的时候。相比之下,标准的回归在这些情况下不见效(除非它是吉洪诺夫正则化)。偏最小二乘算法被用在偏最小二乘路径建模中, 一个建立隐变量(原因不能没有实验和拟实验来确定,但一个典型的模型会基于之前理论假设(隐变量影响衡量指标的表现)的隐变量模型)这种技术是结构方程模型的一种形式,与经典方法不同的是基于组件而不是基于协方差。偏最小二乘来源于瑞典统计学家Herman Wold,然后由他的儿子Svante Wold发展。偏最小二乘的另一个词(根据Svante Wold)是投影到潜在结构,但偏最小二乘法依然在许多领域占据着主导地位。尽管最初的应用是在社会科学中,偏最小二乘回归今天被广泛用于化学计量学和相关领域。它也被用于生物信息学,sensometrics,神经科学和人类学。而相比之下,偏最小二乘回归最常用于社会科学、计量经济学、市场营销和战略管理。偏最小二乘的一般多元底层模型是其中 X {displaystyle X} 是一个 n × m {displaystyle ntimes m} 的预测矩阵, Y {displaystyle Y} 是一个 n × p {displaystyle ntimes p} 的响应矩阵; T {displaystyle T} 和 U {displaystyle U} 是 n × l {displaystyle ntimes l} 的矩阵,分别为 X {displaystyle X} 的投影(“X分数”、“组件”或“因子”矩阵)和 Y {displaystyle Y} 的投影(“Y分数”); P {displaystyle P} 和 Q {displaystyle Q} 分别是 m × l {displaystyle mtimes l} 和 p × l {displaystyle ptimes l} 的正交载荷矩阵,以及矩阵 E {displaystyle E} 和 F {displaystyle F} 是错误项,假设是独立同分布的随机正态变量。对 X {displaystyle X} 和 Y {displaystyle Y} 分解来最大化 T {displaystyle T} 和 U {displaystyle U} 之间的协方差。偏最小二乘的许多变量是为了估计因子和载荷矩阵 T , U , P {displaystyle T,U,P} 和 Q {displaystyle Q} 。它们中大多数构造了 X {displaystyle X} 和 Y {displaystyle Y} 之间线性回归的估计 Y = X B ~ + B ~ 0 {displaystyle Y=X{tilde {B}}+{tilde {B}}_{0}} 。一些偏最小二乘算法只适合 Y {displaystyle Y} 是一个列向量的情况,而其它的算法则处理了 Y {displaystyle Y} 是一个矩阵的一般情况。算法也根据他们是否估计因子矩阵 T {displaystyle T} 为一个正交矩阵而不同。 最后的预测在所有不同最小二乘算法中都是一样的,但组件是不同的。PLS1是一个 Y {displaystyle Y} 是向量时广泛使用的算法。它估计 T {displaystyle T} 是一个正交矩阵。以下是伪代码(大写字母是矩阵,带上标的小写字母是向量,带下标的小写字母和单独的小写字母都是标量):这种形式的算法不需要输入 X {displaystyle X} 和 Y {displaystyle Y} 定中心,因为算法隐式处理了。这个算法的特点是收缩于 X {displaystyle X} (减去 t k t ( k ) p ( k ) T {displaystyle t_{k}t^{(k)}{p^{(k)}}^{T}} ),但向量 y {displaystyle y} 不收缩,因为没有必要(可以证明收缩 y {displaystyle y} 和不收缩的结果是一样的)。用户提供的变量 l {displaystyle l} 是回归中隐藏因子数量的限制;如果它等于矩阵 X {displaystyle X} 的秩,算法将产生 B {displaystyle B} 和 B 0 {displaystyle B_{0}} 的最小二乘回归估计。2002年,一个叫做正交投影(英语:Orthogonal Projections to Latent Structures, OPLS)的方法提出。在OPLS中,连续变量数据被分为预测的和不相关的信息。这有利于改进诊断,以及更容易解释可视化。然而,这些变化只是改善模型的可解释性,不是生产力。 L-PLS通过3个连接数据块扩展了偏最小二乘回归。 同样,OPLS-DA(英语:Discriminant Analysis, 判别分析)可能被应用在处理离散变量,如分类和生物标志物的研究。大多数统计软件包都提供偏最小二乘回归。 R中的‘pls’包提供了一系列算法。

相关

  • 中国旅游日中国旅游日于2011年由中国国务院正式确立,定于每年的5月19日,以纪念《徐霞客游记》开篇之日。在5月19日当天及前后几天内全国各地都会集中展开“中国旅游日”活动。中国旅游日
  • 笔迹学笔迹学(英语:Graphology)是一种研究和分析笔迹的伪科学,主要是借此分析人的心理。在医疗领域,有时会利用笔迹分析来辅助大脑和神经系统疾病的诊断和跟进。笔迹学常被误会是文件鉴
  • 车部,为汉字索引中的部首之一,康熙字典214个部首中的第一百五十九个(七划的则为第十三个)。就正体中文中,车部归于七划部首,简体中文则归四划。车部通常从左方、下方为部字。且无
  • 塞勒姆塞勒姆 (英语:Salem)是美国俄勒冈州州府、马里昂县县治。位于该州西北部、威拉米特河畔。此地人口约15万,是仅次于波特兰的第二大城市,与周边的凯泽尔、伍德伯恩及达拉斯一起形成
  • 安哥拉历史安哥拉为非洲西南部国家。安哥拉这个词是来源于金邦杜语中的王。从考古学的角度来看,安哥拉历史开始于旧石器时代。人类最早开始居住现今安哥拉是在旧石器时代和新时期时代。
  • 怀孕初期出血怀孕初期出血意指孕妇在孕龄未满 24 周时的阴道出血(英语:Vaginal bleeding)症状,可能的并发症为低血容性休克。曾出现下列症状的孕妇可能有较高风险:失去意识或晕厥(英语:Syncope)
  • 谢尔日·萨尔基相谢尔日·阿扎特·萨尔基相(亚美尼亚语:Սերժ Ազատի Սարգսյան;1954年6月30日-),亚美尼亚政治家,现任亚美尼亚共和党主席。曾任亚美尼亚国防部长、内务部长、国家安
  • 库贾氏症克罗伊茨费尔特-雅各布病(英语:Creutzfeldt-Jakob disease,简称CJD),或称克-雅氏症、克-雅氏病、克雅二氏症、克雅二氏病、库雅氏症、库贾氏症、克雅氏症、克雅氏病,是一种发生在
  • UTC-1UTC−01:00时区比协调世界时慢1小时,包含以下区域:
  • 乔治-欧仁·奥斯曼乔治-欧仁·奥斯曼男爵(法语:Baron Georges-Eugène Haussmann,1809年3月27日-1891年1月11日),法国城市规划师,因获拿破仑三世重用,主持了1852年至1870年的巴黎城市规划而闻名。当今