首页 >
虚功
✍ dations ◷ 2025-10-09 22:55:50 #虚功
在分析力学里,施加于某物体的作用力,由于给定的虚位移,所做的机械功,称为虚功(英语:virtual work)。以方程表达,虚功
δ
W
{displaystyle delta W}
是其中,
F
{displaystyle mathbf {F} }
是作用力,
δ
r
{displaystyle delta mathbf {r} }
是虚位移。在这篇文章里,位移指的是平移运动所造成的位移或旋转运动所造成的角位移;作用力指的是力量或力矩。虚位移不是实际的位移,而是一种虚构的、理论上的位移,是一种只涉及位置,不涉及时间的变化。每一个虚位移既是自变量(independent variable),又是任意设定的。任意性是一个很重要的特性,在数学关系式里,能够推导出许多重要的结果。例如,思考下述矩阵方程:其中,
R
,
r
,
q
{displaystyle mathbf {R} , mathbf {r} , mathbf {q} }
都是矢量,
B
{displaystyle mathbf {B} }
是方块矩阵。假若,
R
{displaystyle mathbf {R} }
是个任意非零矢量,则可以将任意项目
R
{displaystyle mathbf {R} }
从方程中除去,得到
r
=
B
q
{displaystyle mathbf {r} =mathbf {B} mathbf {q} }
。虚功原理阐明,一个物理系统处于静态平衡(static equilibrium),当且仅当,所有施加的外力,经过符合约束条件的虚位移,所做的虚功的总和等于零。以方程表达,考虑一个由一群质点组成,呈静态平衡的物理系统,其内部任意一个质点
P
i
{displaystyle P_{i}}
可能感受到很多个作用力。这些作用力的总和
F
i
(
T
)
{displaystyle mathbf {F} _{i}^{(T)}}
等于零:给予这质点
P
i
{displaystyle P_{i}}
虚位移
δ
r
i
{displaystyle delta mathbf {r} _{i}}
,则合力
F
i
(
T
)
{displaystyle mathbf {F} _{i}^{(T)}}
所做的虚功
δ
W
i
{displaystyle delta W_{i}}
为零:总合这系统内做于每一个质点的虚功,其答案也是零:将合力细分为外力
F
i
{displaystyle mathbf {F} _{i}}
与约束力
C
i
{displaystyle mathbf {C} _{i}}
:假设所有约束力所做的符合约束条件的虚功,其总合是零:则约束力项目可以从方程中除去,从而得到虚功原理的方程:注意到这推论里的约束力假设。在这里,约束力就是牛顿第三定律的反作用力。因此,可以称此假设为反作用力的虚功假设:所有反作用力所做的符合约束条件的虚功,其总合是零。这是分析力学额外设立的假设,无法从牛顿运动定律推导出来。在动力学里,虚功原理会被推广为达朗贝尔原理。这原理是拉格朗日力学的理论基础。更详尽细节,请参阅相关条目。在此特别列出几个案例,展示出约束力所做的符合约束条件的虚功的总合是零:将一般的作用力和坐标分别变换为以广义力
F
i
{displaystyle {mathcal {F}}_{i}}
和广义坐标
q
i
{displaystyle q_{i}}
表达,设定一个
N
{displaystyle N}
维位形空间,其坐标为
(
q
1
,
q
2
,
…
,
q
N
)
{displaystyle (q_{1},q_{2},dots ,q_{N})}
,其内中表示位置的点称为位形点。想像这物理系统移动于这位形空间。在这位形空间里,广义力
F
=
(
F
1
,
F
2
,
…
,
F
N
)
{displaystyle {boldsymbol {mathcal {F}}}=(F_{1},F_{2},dots ,F_{N})}
垂直于符合约束条件的虚位移
δ
q
=
(
δ
q
1
,
δ
q
2
,
…
,
δ
q
N
)
{displaystyle delta mathbf {q} =(delta q_{1},delta q_{2},dots ,delta q_{N})}
。假设,这物理系统没有任何约束条件,则虚位移可以是任意矢量。但是,广义力
F
{displaystyle {boldsymbol {mathcal {F}}}}
不可能垂直于
N
{displaystyle N}
维位形空间里的每一个矢量,所以,广义力
F
{displaystyle {boldsymbol {mathcal {F}}}}
必须等于零。假设,这物理系统有
L
{displaystyle L}
个约束条件,则自由度为
N
−
L
{displaystyle N-L}
,位形点必需处于位形空间的某
N
−
L
{displaystyle N-L}
维子空间,而广义力
F
{displaystyle {boldsymbol {mathcal {F}}}}
必须垂直于这子空间,因此必需使用
N
−
L
{displaystyle N-L}
个运动方程来表达这物理系统。假设这系统是保守系统,则每一个广义力都是标量的广义位势函数
V
(
q
1
,
q
2
,
…
,
q
N
)
{displaystyle V(q_{1},q_{2},dots ,q_{N})}
的对于其对应的广义坐标的负偏导数:虚功与广义位势的关系为由于位势的变分
δ
V
{displaystyle delta V}
等于零,一个静态平衡系统的位势
V
{displaystyle V}
乃是个局域平稳值。注意到这系统只处于平稳状态。假设,要求这系统处于稳定状态,则位势
V
{displaystyle V}
必须是个局域极小值。
相关
- 待分类的广泛性发展障碍待分类的广泛性发展障碍(Pervasive Developmental Disorder Not Otherwise Specified;简称PDD-NOS),亦作非典型自闭症,泛指一般有自闭症倾向,但不能透过其特征而归类为更具体的
- 健康照护人体解剖学 - 人体生理学 组织学 - 胚胎学 人体寄生虫学 - 免疫学 病理学 - 病理生理学 细胞学 - 营养学 流行病学 - 药理学 - 毒理学医疗卫生,又称健康照护(英语:Health care
- 乳酸菌乳酸菌,可能指:
- 紫球藻紫球藻(Porphyridium cruentum)是一种红藻门红藻亚门单细胞藻类紫球藻属的藻类植物,是红藻门一种比较原始的品种,能够产生许多生物活性物质,如藻红蛋白、藻胆蛋白、多不饱和脂肪
- 科尔蒂纳丹佩佐科尔蒂纳丹佩佐(意大利语:Cortina d'Ampezzo;德语:Hayden;拉登语:Anpezo, Ampëz)是意大利威尼托大区北部的一个城市,曾主办1956年冬季奥林匹克运动会,1944年预订主办冬季奥林匹克运
- 景观生态学景观生态学是研究景观单元的类型组成、空间配置及其与生态学过程相互作用的综合性学科。强调空间格局、生态学过程与尺度之间的相互作用是景观生态学研究的核心所在。岛屿生
- 角膜塑形镜角膜塑形术是一种眼科学的视力矫正术,又称OK 镜片,透过一种高透气式的硬式隐形眼镜,来改善日间的视力。与一般隐形眼镜不同的是,角膜塑形术使用的隐形眼镜是在夜间配戴,透过透明
- 库内内省库内内省(葡语:Cunene),位于安哥拉南部,与库安多古班哥省、威拉省、纳米贝省等省份及纳米比亚相邻。
- ClFOsub2/sub氯酰氟是一种无机化合物,化学式为ClO2F。它是氟化氯与含氧化合物反应产生的常见副产物。它是氯酸的酰氟。ClO2F最早由Schmitz和Schumacheb于1942年报道,他们通过二氧化氯的氟
- 癌德星环磷酰胺(Cyclophosphamide)。为oxazophorines的衍生物。其药物化学机制为:由于环磷酰胺具有减低或停止细胞生长的功能,所以常和其他免疫抑制剂一起用来治疗淋巴瘤 、某些脑癌