无名氏定理

✍ dations ◷ 2025-10-12 19:23:26 #无名氏定理

在博弈论中,无名氏定理(英语:folk theorem)是一类描述重复博弈纳什均衡的定理。起初,无名氏定理仅关注无穷博弈的纳什均衡。在20世纪50年代,这类定理已经广受博弈论学者知晓,但并没有人发表它,所以称为无名氏定理。1971年发表的Friedman定理考虑了无穷博弈的一系列子博弈精炼纳什均衡(英语:Subgame perfect equilibrium)(SPE),把定理的初始版本推广到了更强的均衡概念上。

无名氏定理指出,如果参与者对未来足够有耐心(也即贴现因子 δ 1 {\displaystyle \delta \to 1} ),对于任意可行、满足个人理性假设的一组收益 v = ( v 1 , , v n ) {\displaystyle v=(v_{1},\cdots ,v_{n})} ,都存在着一个子博弈精炼纳什均衡,使得第 i {\displaystyle i} 个参与者的平均收益就是 v i {\displaystyle v_{i}} 。换言之,任何程度的合作(只要是可行的且满足个人理性)都可以通过一个子博弈精炼纳什均衡来达成。

例如,在只有一期的囚徒困境中,两个参与者都选择合作并非纳什均衡,唯一的纳什均衡就是两个人都选择背叛。根据无名氏定理,如果囚徒困境重复无穷多次,并且参与者足够有耐心,就会存在两个参与者都合作的纳什均衡。但在有限期囚徒困境中,最后一期一定会双方都背叛,从而倒数第二期双方也会背叛,以此类推,唯一的子博弈精炼纳什均衡就是双方一直背叛,不会有合作出现。

重复博弈中的纳什均衡应该满足以下两个性质:

无名氏定理有若干种,有些考虑有限重复博弈,有些考虑无限重复博弈。

在不考虑贴现的无穷博弈中,参与者都是有耐心的。在任何时间点,相同的效用带来的收益都是相同的。所以在无穷博弈中,每个参与者的收益就等于每一期博弈获取效用的总和。

就无穷博弈而言,总收益的计算通常是平均效用取极限以后的下确界。假设第 t {\displaystyle t} 期参与者 i {\displaystyle i} 选择的行动是 x t {\displaystyle x_{t}} ,那么他的总收益就是:

其中 u i {\displaystyle u_{i}} 表示每个阶段博弈中,参与者 i {\displaystyle i} 的效用函数。

这种情况下,无名氏定理指出:阶段博弈中满足个人理性且可行的行动在无穷博弈中都是纳什均衡。

考虑冷酷战略(英语:Grim trigger)。所有参与者都按照预定的策略进行每一期博弈。如果在某一期中有人没有使用预定策略,从下一期开始所有人永远选择让这个人只能拿到最小最大收益的策略。这样,出偏差的人的总收益也只能是最小最大收益,所以所有人都愿意按照预定策略行事。:139

上述纳什均衡不一定是一个子博弈精炼均衡。如果实施惩罚对其他人的收益影响也很大,那么惩罚就是不可信的。

要想达到子博弈精炼均衡,每次有人偏离预定策略时,惩罚不应该一直实施下去,而只应持续到出偏差的人在那一期博弈带来的额外收益得到抵消为止。之后,大家依旧按照预定策略继续博弈。:146–149

因为计算总收益的方法是平均收益取极限,所以有限期的惩罚并不会影响总收益。这样,这就是一个子博弈精炼纳什均衡。

设贴现因子 δ {\displaystyle \delta } 满足 0 < δ < 1 {\displaystyle 0<\delta <1} ,无穷博弈的总收益为:

贴现因子的大小反映出参与者的耐心高低。

这种情况下的无名氏定理指出,每个人的总收益将严格大于最小最大收益。

相关

  • 丰度在物理学中,天然丰度(Natural Abundance, 缩写: NA),又称天然存在比,是指在在一个行星上被发现天然存在的化学元素的同位素的化学元素丰度。丰度的大小一般以百分数表示。人造同
  • 四环霉素四环霉素(英语:Tetracycline,/ˌtɛtrəˈsaɪkliːn/,INN),又称四环素,一种聚酮类广谱抗生素药物的泛称,这类药物由链霉菌属放线菌门细菌所产生,基本化学结构均由四个环接合而成,可用
  • 随意肌骨骼肌是一种肌组织。此外心肌和平滑肌亦属于肌组织。肌肉中的肌细胞又称肌纤维,而骨骼肌的肌细胞属于多核细胞,有几十个甚至上百个呈扁椭圆形的细胞核。骨骼肌纤维呈长圆柱状
  • 格利佛游记《格列佛游记》(英语:Gulliver's Travels)是爱尔兰牧师、政治人物与作家乔纳森·斯威夫特以笔名执笔的匿名小说,原版因内容招致众怒而经大幅改变于1726年出版,1735年完全版出版。
  • 宇宙和谐音乐宇宙又称音乐的普适性或天体音乐(拉丁语:Musica universalis,Musica:音乐的中世纪拉丁文名称),是一种古老的哲学概念,相关比例在运动的天体上如太阳、月亮和行星等遵从音乐的普
  • 万户万户(英语:Wan Hu,?-?),一作万虎,是传说中中国明朝的一个官吏,根据作品描述“是历史上首位尝试用火箭升空的人”。现存中国历史资料中尚未发现关于万户的记载。美国国家航空航天局曾将
  • 费卢杰费卢杰(阿拉伯语:فلوجة)是伊拉克安巴尔省城市,位于伊斯兰教什叶派圣城纳杰夫附近。费卢杰又名“清真寺城市”,市郊区内有超过200座清真寺。该城也是逊尼派的重要据点。2014
  • 台湾汽车客运公司台湾汽车客运股份有限公司,简称臺汽、台湾客运、臺汽客运、臺汽公司,是昔日在台湾提供公路客运服务的公营企业。1980年成立时一度为具独占地位的公路客运事业,但因人事支出负担
  • 海狮号潜艇海狮军舰(SS-791),原为美国海军二次大战期间服役丁鱥级(英语:Tench-class submarine)(Tench Class)柴电潜舰之13号舰带鱼号(英语:USS Cutlass (SS-478))(USS Cutlass SS-478),于1973年移交
  • 银杏属Salisburia Sm.银杏属是银杏科下唯一现存的一个属,主要产于中国和日本。银杏属下仅存银杏(Ginkgo biloba)一个种和数个变种。因为曾经发现2.7亿年前的二叠纪时期的化石中的植物