双曲线

✍ dations ◷ 2025-10-10 11:30:20 #双曲线
在数学中,双曲线(英语:hyperbola;希腊语:ὑπερβολή,意思是超过、超出)是定义为平面交截直角圆锥面的两半的一类圆锥曲线。它还可以定义为与两个固定的点(称为焦点)的距离差是常数的点的轨迹。这个固定的距离差是 a {displaystyle a} 的两倍,这里的 a {displaystyle a} 是从双曲线的中心到双曲线最近的分支的顶点的距离。 a {displaystyle a} 还称为双曲线的半实轴。焦点位于贯轴上,它们的中间点称为中心。从代数上说,双曲线是在笛卡尔平面上由如下方程定义的曲线使得 B 2 > 4 A C {displaystyle B^{2}>4AC} ,这里的所有系数都是实数,并存在定义在双曲线上的点对 ( x , y ) {displaystyle (x,y)} 的多于一个的解。注意在笛卡尔坐标平面上两个互为倒数的变量的图像是双曲线。前两个上面已经列出了:双曲线由分开两个焦点的两个分离的称为臂或分支的曲线构成。随着到焦点的距离的变大,双曲线就越逼近称为渐近线的两条线。渐近线交叉于双曲线的中点,并对于东西开口的双曲线有斜率 ± b a {displaystyle pm {frac {b}{a}}} ,对于北南开口的双曲线有斜率 ± a b {displaystyle pm {frac {a}{b}}} 。双曲线有个性质,出自一个焦点的射线反射于双曲线后看起来像是出自另一个焦点。双曲线的一个特殊情况是“等轴”或“直角”双曲线,它的渐近线交于直角。以坐标轴作为渐近线的直角双曲线由方程 x y = c {displaystyle xy=c} 给出,这里的 c {displaystyle c} 是常数。如果对双曲线方程交换 x {displaystyle x} 和 y {displaystyle y} ,得到它的共轭双曲线。共轭双曲线有同样的渐近线。中心位于 ( h , k ) {displaystyle (h,k)} 的左右开口的双曲线:中心位于 ( h , k ) {displaystyle (h,k)} 的上下开口的双曲线:实轴贯穿双曲线的中心并交双曲线两臂于它们的顶点(拐点)。焦点位于双曲线实轴的延长线上。虚轴贯穿双曲线中点并垂直于实轴。在两个公式中, a {displaystyle a} 是半实轴(在双曲线两臂之间沿着实轴测量的距离),而 b {displaystyle b} 是半虚轴。如果用双曲线的两个顶点的切线交渐近线形成一个矩形,在切线上的两边的长度是 2 b {displaystyle 2b} ,平行于实轴的两边的长度是 2 a {displaystyle 2a} ,注意 b {displaystyle b} 可以大于 a {displaystyle a} 。如果计算从双曲线上任意准线上的点到每个焦点的距离,这两个距离的差的绝对值总是 2 a {displaystyle 2a} 。离心率给出自:左右开口的双曲线的焦点是: ( h ± c , k ) {displaystyle left(hpm c,kright)} ,其中c给出自 c 2 = a 2 + b 2 {displaystyle c^{2}=a^{2}+b^{2}} 。上下开口的双曲线的焦点是: ( h , k ± c ) {displaystyle left(h,kpm cright)} ,其中c给出自 c 2 = a 2 + b 2 {displaystyle c^{2}=a^{2}+b^{2}} 。对于以直线 x = h {displaystyle x=h} 和直线 y = k {displaystyle y=k} 为渐近线的直角双曲线:这种双曲线最简单的例子是:左右开口的双曲线:上下开口的双曲线:上右下左开口的双曲线:上左下右开口的双曲线:在所有公式中,中心在极点,而 a {displaystyle a} 是半实轴和半虚轴。如同正弦和余弦函数给出椭圆的参数方程,双曲函数给出双曲线的参数方程。 左右开口的双曲线:或上下开口的双曲线:或在所有公式中, ( h , k ) {displaystyle (h,k)} 是双曲线的中点, a {displaystyle a} 是半实轴而 b {displaystyle b} 是半虚轴。焦点在 x {displaystyle x} 轴: x 2 a 2 − y 2 b 2 = 1 {displaystyle {frac {x^{2}}{a^{2}}}-{frac {y^{2}}{b^{2}}}=1}焦点在 y {displaystyle y} 轴: y 2 a 2 − x 2 b 2 = 1 {displaystyle {frac {y^{2}}{a^{2}}}-{frac {x^{2}}{b^{2}}}=1}焦线平行于 x {displaystyle x} 轴: y = ± b a x {displaystyle y=pm {frac {b}{a}}x}焦线平行于 y {displaystyle y} 轴: y = ± a b x {displaystyle y=pm {frac {a}{b}}x}ρ = e p 1 + e cos ⁡ θ {displaystyle rho ={frac {ep}{1+ecos theta }}}当 e > 1 {displaystyle e>1} 时,表示双曲线。其中 p {displaystyle p} 为焦点到准线距离, θ {displaystyle theta } 为弦与 x {displaystyle x} 轴夹角。

相关

  • Tlsub2/subS硫化亚铊是一价铊的硫化物,分子式为Tl2S。它在室温下会氧化,高温氧化时生成硫酸铊。硫化亚铊通常可以直接用铊和硫反应而成,也可以以硫化氢和氯化铊作用制取。
  • 欧洲各共同体欧洲各共同体(英语:European Communities, EC; 法语:Communautés européennes, CE; 德语:Europäische Gemeinschaften, EG/EGen)是一个已不再被欧盟官方使用的制度名称(使用期
  • 荷兰共和国尼德兰七省联合共和国(荷兰语:De Republiek der Zeven Verenigde Nederlanden),又称联省共和国,中文俗称荷兰共和国,是1581年-1795年期间,在现在的荷兰及比利时北部地区(弗兰德地区)
  • 美国爱国法《美国爱国者法》(USA PATRIOT Act)是2001年10月26日由美国总统乔治·沃克·布什签署颁布的国会法,正式的名称为“Uniting and Strengthening America by Providing Appropriat
  • 盐酸盐氯化物在无机化学领域里是指带负电的氯离子和其它元素带正电的阳离子结合而形成的盐类化合物。最常见的氯化物比如氯化钠(俗称食盐)。常见的氯化物列在右表。但有时金属(如金)溶
  • 作用量在物理学里,作用量(英语:action)是一个很特别、很抽象的物理量。它表示著一个动力物理系统内在的演化趋向。虽然与微分方程方法大不相同,作用量也可以被用来分析物理系统的运动,所
  • 阿德莱德级巡防舰托德造船厂(英语:Todd Pacific Shipyards)西雅图分部澳洲:澳大利亚海洋工程联合公司(AMECON,今特尼克斯防务)维多利亚省威廉斯顿 (维多利亚州)分部4,500海里(8,300千米;5,200英里)Mk 1
  • 类淀粉沉积症类淀粉沉积症(英语:Amyloidosis),又称类淀粉堆积症或淀粉样变,是指类淀粉蛋白(一种异常蛋白质)沉积在组织引起的一类疾病。类淀粉沉积症的病征视乎淀粉样蛋白沉积的所在地而有所不
  • 富士见书房富士见书房(日语:富士見書房),是角川集团旗下以出版轻小说为主,兼发行杂志、书籍的品牌。原是于1972年12月设立的角川书店分公司,在东京都千代田区富士见的角川书店土地上开始营运
  • 日本烟草公司日本烟草产业株式会社(日语:日本たばこ産業株式会社,英语:Japan Tobacco Inc.),简称JT,是日本最大的烟草制造企业,同时为日经225指数成份股之一。在台湾的子公司为杰太日烟国际股份