迭代稀疏渐近最小方差算法

✍ dations ◷ 2025-07-02 23:38:53 #医学成像,信号处理,断层扫描,估计理论,电信理论,滤波器理论

迭代稀疏渐近最小方差算法是用于信号处理中的谱估计和到达方向(DOA)估计的无参数超分辨率算法。 这个名称是为了强调渐近最小方差(AMV)标准的创造基础。 它是在恶劣环境下恢复多个高相关源的幅度和频率特性的有力工具,例如有限数量的快照,低信噪比。 它可以用于合成孔径雷达。

迭代稀疏渐近最小方差算法是一种基于压缩感知的超高分辨率成像程式, 可以用于合成孔径雷达成像, 信号处理, 核磁共振成像等医学影像领域。

SAMV算法的公式在DOA估计的背景下作为反问题给出。假设 M {\displaystyle M} -元素 均匀线性阵列(ULA)分别接收从位于 θ = { θ a , , θ K } {\displaystyle \mathbf {\theta } =\{\theta _{a},\ldots ,\theta _{K}\}} 位置发出的 K {\displaystyle K} 窄带信号。 ULA中的传感器在特定时间累积 N {\displaystyle N} 快照。 M × 1 {\displaystyle M\times 1} 维快照向量是

其中 A = {\displaystyle \mathbf {A} =} 是转向矩阵, x ( n ) = T {\displaystyle {\bf {x}}(n)=^{T}} 包含源波形, 和 e ( n ) {\displaystyle {\bf {e}}(n)} 是噪音词。假设 E ( e ( n ) e H ( n ¯ ) ) = σ I M δ n , n ¯ {\displaystyle \mathbf {E} \left({\bf {e}}(n){\bf {e}}^{H}({\bar {n}})\right)=\sigma {\bf {I}}_{M}\delta _{n,{\bar {n}}}} , δ n , n ¯ {\displaystyle \delta _{n,{\bar {n}}}} 是 Dirac delta 函数 并且它仅等于1,唯一存在 n = n ¯ {\displaystyle n={\bar {n}}} 否则为0。并且假设 e ( n ) {\displaystyle {\bf {e}}(n)} and x ( n ) {\displaystyle {\bf {x}}(n)} 是独立的,而 E ( x ( n ) x H ( n ¯ ) ) = P δ n , n ¯ {\displaystyle \mathbf {E} \left({\bf {x}}(n){\bf {x}}^{H}({\bar {n}})\right)={\bf {P}}\delta _{n,{\bar {n}}}} , where P = Diag ( p 1 , , p K ) {\displaystyle {\bf {P}}=\operatorname {Diag} ({p_{1},\ldots ,p_{K}})} . Let p {\displaystyle {\bf {p}}} 是包含未知信号功率和噪声方差的向量, p = T {\displaystyle {\bf {p}}=^{T}} .

y ( n ) {\displaystyle {\bf {y}}(n)} 的协方差矩阵,其中有关 p {\displaystyle {\boldsymbol {\bf {p}}}} 的是

该协方差矩阵可以通过样本协方差矩阵进行传统估计 R N = Y Y H / N {\displaystyle {\bf {R}}_{N}={\bf {Y}}{\bf {Y}}^{H}/N} ,其中 Y = {\displaystyle {\bf {Y}}=} 。将向量化运算符应用于矩阵 R {\displaystyle {\bf {R}}} 后,获取的向量 r ( p ) = vec ( R ) {\displaystyle {\bf {r}}({\boldsymbol {\bf {p}}})=\operatorname {vec} ({\bf {R}})} 与未知参数线性相关 p {\displaystyle {\boldsymbol {\bf {p}}}}

r ( p ) = vec ( R ) = S p {\displaystyle {\bf {r}}({\boldsymbol {\bf {p}}})=\operatorname {vec} ({\bf {R}})={\bf {S}}{\boldsymbol {\bf {p}}}} ,

其中 S = {\displaystyle {\bf {S}}=} , S 1 = {\displaystyle {\bf {S}}_{1}=} , a ¯ k = a k a k {\displaystyle {\bar {\bf {a}}}_{k}={\bf {a}}_{k}^{*}\otimes {\bf {a}}_{k}} , k = 1 , , K {\displaystyle k=1,\ldots ,K} , 和使 a ¯ K + 1 = vec ( I ) {\displaystyle {\bar {\bf {a}}}_{K+1}=\operatorname {vec} ({\bf {I}})} .

要从统计的 r N {\displaystyle {\bf {r}}_{N}} 去估算 p {\displaystyle {\boldsymbol {\bf {p}}}} ,我们基于渐近最小方差准则开发了一系列迭代SAMV方法。从开始,从协方差矩阵 Cov p Alg {\displaystyle \operatorname {Cov} _{\boldsymbol {p}}^{\operatorname {Alg} }} 的任意一致的估计值 p {\displaystyle {\boldsymbol {p}}} ,基于二阶统计值 r N {\displaystyle {\bf {r}}_{N}} ,以实数对称-正定矩阵为界

其中 S d = d r ( p ) / d p {\displaystyle {\bf {S}}_{d}={\rm {d}}{\bf {r}}({\boldsymbol {p}})/{\rm {d}}{\boldsymbol {p}}} 。此外,这个下界是通过最小化得到的 p ^ {\displaystyle {\hat {\bf {p}}}} 的渐近分布的协方差矩阵得到的。 ,

其中 f ( p ) = H C r 1 . {\displaystyle f({\boldsymbol {p}})=^{H}{\bf {C}}_{r}^{-1}.}

因此,可以迭代地获 p {\displaystyle {\boldsymbol {\bf {p}}}} 的估计值。 { p ^ k } k = 1 K {\displaystyle \{{\hat {p}}_{k}\}_{k=1}^{K}} 和最小化 f ( p ) {\displaystyle f({\boldsymbol {p}})} σ ^ {\displaystyle {\hat {\sigma }}} 可借由以下计算获得。

假设 p ^ k ( i ) {\displaystyle {\hat {p}}_{k}^{(i)}} σ ^ ( i ) {\displaystyle {\hat {\sigma }}^{(i)}} 在第 i {\displaystyle i} 迭代中已被估算到某种程度, 第 ( i + 1 ) {\displaystyle (i+1)} 迭代可以被精简成,

其中 R {\displaystyle {\bf {R}}} 的估计值在第 i {\displaystyle i} 迭代是 R ( i ) = A P ( i ) A H + σ ^ ( i ) I {\displaystyle {\bf {R}}^{(i)}={\bf {A}}{\bf {P}}^{(i)}{\bf {A}}^{H}+{\hat {\sigma }}^{(i)}{\bf {I}}} with P ( i ) = Diag ( p ^ 1 ( i ) , , p ^ K ( i ) ) {\displaystyle {\bf {P}}^{(i)}=\operatorname {Diag} ({\hat {p}}_{1}^{(i)},\ldots ,{\hat {p}}_{K}^{(i)})} .

基于大多数压缩感知的源定位技术的分辨率受到覆盖位置参数空间的方向网格的精细度的限制。 在稀疏信号恢复模型中,真值信号的稀疏性 x ( n ) {\displaystyle \mathbf {x} (n)} 取决于超完备字典 A {\displaystyle {\bf {A}}} 中相邻元素之间的距离因此, 会出现选择最佳超完备字典的难度。计算复杂度与方向网格的精细度成正比,高密度网格在计算上不实用。为了克服网格强加的分辨率限制,提出了无网格SAMV-SML(迭代稀疏渐近最小方差 - 随机最大似然, 它借由迭代的最小化随机最大似然估计的消耗函数,相对于单一纯数 θ k {\displaystyle \theta _{k}} ,改进了位置估计 θ = ( θ 1 , , θ K ) T {\displaystyle {\boldsymbol {\bf {\theta }}}=(\theta _{1},\ldots ,\theta _{K})^{T}}

在 SISO 雷达 / 声纳 距离 - 多普勒成像问题中使用SAMV算法的典型应用。该成像问题是单快照应用,并且包括与单快照估计兼容的算法,即匹配滤波器(MF,类似于周期图或反投影,这通常被有效地实现为快速傅里叶变换(FFT)),IAA 和SAMV算法的变体(SAMV-0)。 模拟条件与之相同: 一个 30 {\displaystyle 30} -元素的多项 pulse compression使用P3代码相同作为发射脉冲,模拟总共九个运动目标。在所有移动目标中,三个是 5 {\displaystyle 5} dB功率,其余六个是 25 {\displaystyle 25} dB功率。假设接收信号被 0 {\displaystyle 0} dB功率的均匀高斯白噪声污染。

匹配滤波器检测结果在多普勒和范围域都受到严重的拖尾和光谱泄漏影响,因此无法区分 5 {\displaystyle 5} dB目标。相反,IAA算法提供增强的成像结果,具有可观察的目标范围估计和多普勒频率。 SAMV-0方法提供高度稀疏的结果并完全消除拖尾效应,但它错过了弱 5 {\displaystyle 5} dB目标。


相关

  • 血管运动性鼻炎血管运动性鼻炎是一种非过敏性鼻炎,它有很多的症状跟一般的鼻炎相同,比如慢性的流鼻涕,伴有间断性喷嚏、鼻溢、鼻尖粘膜组织充血,血管运动性鼻炎与鼻窦炎以及其他应激性反应是有
  • C7补体成分C7(Complement component 7),即C7,在人体内是一个由C7基因编码的、分子量为97kD血清糖蛋白。C7分子的主要作用是参与形成膜攻击复合物(MAC)。在MAC形成过程中,在C5b-C6复合
  • 佐佐木仁佐佐木仁(1973年7月9日-),前日本足球运动员。
  • 陈康顺陈康顺(字思恩,1929年9月25日-2011年5月12日)),生于南京市。国立中兴大学法商学院(今国立台北大学)地政系毕业,政治大学企管所,美国肯尼迪大学企管硕士曾任救国团台北学苑总干事、
  • 恩斯特·奥古斯特三世恩斯特·奥古斯特(三世)(Ernst August III),全名恩斯特·奥古斯特·克里斯蒂安·格奥尔格(,1887年11月17日-1953年1月30日),1923年—1953年为汉诺威家族首领,1913年—1918年在位为不伦
  • 本草图经《本草图经》,亦称《图经本草》,北宋嘉祐年间由苏颂主持编撰,刊行于1061年,共20卷,目录1卷。载有常用单方千余首。附有九百多幅药图,是中国现存最早的版刻本草图谱。
  • 日本以外全部沉没《日本以外全部沉没》是筒井康隆的小说,并于2006年拍成电影。1973年,小松左京的《日本沉没》大畅销,在庆功宴上闲聊出一个话题,就是“如果日本以外的国家都沉没会怎样”,筒井康隆
  • 马丁·埃柏兹马丁·埃柏兹(Martin Ebbertz),1962年出生于德国亚琛,研习语言学、哲学与历史学。有几年的时间居住在德国希腊,现在定居在莱茵兰 ,并任职于出版社、报社与广播电台。《矮先生》是
  • 曹磊 (举重运动员)曹磊(1983年12月24日-),女,回族,中国举重运动员,出生于河北秦皇岛。曹磊在1997年时进入黑龙江省的大庆市体育学校,教练齐锡富。随后,她入选黑龙江举重队,2002年,她成为国家队一员,马文辉
  • 姜宏波姜宏波(1973年1月18日-),黑龙江齐齐哈尔人,中国大陆女演员。她生于黑龙江省齐齐哈尔市。毕业于沈阳体育学院,当过排球运动员,后来毕业于北京电影学院表演系。现在居住于北京。