首页 >
拉格朗日方程
✍ dations ◷ 2025-10-09 16:25:46 #拉格朗日方程
拉格朗日方程(Lagrange equation),因数学物理学家约瑟夫·拉格朗日而命名,是分析力学的重要方程,可以用来描述物体的运动,特别适用于理论物理的研究。拉格朗日方程的功能相等于牛顿力学中的牛顿第二定律。假设一个物理系统符合完整系统的要求,即所有广义坐标都互相独立,则拉格朗日方程成立:其中,
L
(
q
,
q
˙
,
t
)
{displaystyle {mathcal {L}}(mathbf {q} , {dot {mathbf {q} }}, t),!}
是拉格朗日量,
q
=
(
q
1
,
q
2
,
…
,
q
N
)
{displaystyle mathbf {q} =left(q_{1},q_{2},ldots ,q_{N}right),!}
是广义坐标,是时间
t
{displaystyle t,!}
的函数,
q
˙
=
(
q
˙
1
,
q
˙
2
,
…
,
q
˙
N
)
{displaystyle {dot {mathbf {q} }}=left({dot {q}}_{1},{dot {q}}_{2},ldots ,{dot {q}}_{N}right),!}
是广义速度。在分析力学里,有三种方法可以导引出拉格朗日方程。最原始的方法是使用达朗贝尔原理导引出拉格朗日方程(参阅达朗贝尔原理);更进阶层面,可以从哈密顿原理推导出拉格朗日方程(参阅哈密顿原理);最简明地,可以借用数学变分法的欧拉-拉格朗日方程来推导:设定函数
y
(
x
)
{displaystyle mathbf {y} (x),!}
和
f
(
y
,
y
˙
,
x
)
{displaystyle f(mathbf {y} , {dot {mathbf {y} }}, x),!}
:其中,
x
{displaystyle x,!}
是自变数(independent variable)。若
y
(
x
)
∈
(
C
1
[
a
,
b
]
)
N
{displaystyle mathbf {y} (x)in (C^{1})^{N},!}
使泛函
J
(
y
)
=
∫
a
b
f
(
y
,
y
˙
,
x
)
d
x
{displaystyle J(mathbf {y} )=int _{a}^{b}f(mathbf {y} , {dot {mathbf {y} }}, x)dx,!}
取得局部平稳值,则在区间
(
a
,
b
)
{displaystyle (a, b),!}
内,欧拉-拉格朗日方程成立:现在,执行下述转换:则可得到拉格朗日方程一个不是完整系统的物理系统是非完整系统,不能用上述形式论来分析。假若,一个非完整系统的约束可以以方程表示为则称此系统为半完整系统。半完整系统可以用拉格朗日形式论来分析。更具体地说,分析半完整系统必须用到拉格朗日乘子
λ
i
{displaystyle lambda _{i},!}
:其中,
λ
i
=
λ
i
(
q
,
q
˙
,
t
)
{displaystyle lambda _{i}=lambda _{i}(mathbf {q} , {dot {mathbf {q} }}, t),!}
是未知函数。由于这
N
{displaystyle N,!}
个广义坐标中,有
n
{displaystyle n,!}
个相依的广义坐标,泛函
f
(
y
,
y
˙
,
x
)
{displaystyle f(mathbf {y} , {dot {mathbf {y} }}, x),!}
不能直接被转换为拉格朗日量
L
{displaystyle {mathcal {L}},!}
;必须加入拉格朗日乘子,将泛函
f
(
y
,
y
˙
,
x
)
{displaystyle f(mathbf {y} , {dot {mathbf {y} }}, x),!}
转换为
L
+
∑
i
=
1
n
λ
i
g
i
{displaystyle {mathcal {L}}+sum _{i=1}^{n} lambda _{i}g_{i},!}
。这样,可以得到拉格朗日广义力方程:其中,
F
{displaystyle {boldsymbol {mathcal {F}}},!}
是广义力,
F
=
∂
∂
q
(
∑
i
=
1
n
λ
i
g
i
)
−
d
d
t
[
∂
∂
q
˙
(
∑
i
=
1
n
λ
i
g
i
)
]
{displaystyle {boldsymbol {mathcal {F}}}={frac {partial }{partial mathbf {q} }}left(sum _{i=1}^{n} lambda _{i}g_{i}right)-{frac {d}{dt}}left,!}
。这
N
{displaystyle N,!}
个广义力运动方程加上
n
{displaystyle n,!}
个约束方程,给出
N
+
n
{displaystyle N+n,!}
个方程来解
N
{displaystyle N,!}
个未知广义坐标与
n
{displaystyle n,!}
个拉格朗日乘子。这个段落会展示拉格朗日方程的两个应用实例。第一个实例展示出,用牛顿方法与拉格朗日方法所得的答案相同。第二个实例展示出拉格朗日方法的威力,因为这问题比较不适合用牛顿方法来分析。思考一个粒子从静止状态自由地下落。由于重力
F
=
m
g
{displaystyle F=mg,!}
作用于此粒子,应用牛顿第二定律,可以得到运动方程其中,x-坐标垂直于地面,由初始点(原点)往地面指。这个结果也可以从拉格朗日形式论得到。动能
T
{displaystyle T,!}
是位势
V
{displaystyle V,!}
是所以,拉格朗日量
L
{displaystyle {mathcal {L}},!}
是将
L
{displaystyle {mathcal {L}},!}
代入拉格朗日方程,运动方程是与牛顿方法的运动方程相同。思考一个简单摆系统。系统的x-轴平行于地面,y-轴垂直于x-轴,指向地面。摆锤P的质量是
m
{displaystyle m,!}
,位置是
(
x
,
y
)
{displaystyle (x, y),!}
。摆绳的长度是
l
{displaystyle l,!}
。摆的支撑点Q的质量是
M
{displaystyle M,!}
。这支撑点Q可以沿着一条平行于x-轴的直线移动。点Q的位置是
(
X
,
0
)
{displaystyle (X, 0),!}
。摆绳与y-轴的夹角是
θ
{displaystyle theta ,!}
。那么,动能是位势为所以,拉格朗日量是两个约束方程为将约束方程代入拉格朗日量方程,特别注意,在这里,广义坐标是
X
{displaystyle X,!}
与
θ
{displaystyle theta ,!}
。应用拉格朗日方程,经过微分运算,对于
X
{displaystyle X,!}
坐标,可以得到运动方程为由于拉格朗日量不显含广义坐标
X
{displaystyle X,!}
,称
X
{displaystyle X,!}
为可略坐标,而其相对应的广义动量
p
X
{displaystyle p_{X},!}
是常数
K
1
{displaystyle K_{1},!}
:对于
θ
{displaystyle theta ,!}
坐标,可以得到所以,运动方程为假如用牛顿第二定律,则必须仔细地辨明所有的相关作用力。这是一项既困难又容易出错的工作。
相关
- 显微照片显微照相是以显微镜或类似的器材所摄取的相片或影像,以显示放大了的物件影像。显微照相是由加拿大发明家范信达所发明。有制造显微照相,可以在显微镜上安装照相机,取代目镜;或是
- 刚果克拉通刚果克拉通(Congo craton)是个远古克拉通,形成于前寒武纪,与卡普瓦克拉通、津巴布韦克拉通、坦桑尼亚克拉通、西非克拉通构成现今的非洲。这些克拉通形成于36亿年前到20亿年前,并
- 蓝田人蓝田人(学名:Homo erectus lantianensis)是中国的直立人化石。通常称作蓝田猿人,学名直立人蓝田亚种。生活的时代是更新世中期、旧石器时代早期。蓝田人在1963年中国陕西省在蓝
- 邵昕邵昕(1967年8月29日-),台湾男艺人、拍摄过多部影剧作品,现以立祥公寓面店为主业,偶尔接电视通告,曾与日本红星酒井法子合作演出《我爱美人鱼》红极一时,1992年凭借《黄金稻田》入围
- span class=nowrapMnSOsub4/sub/span硫酸锰是一种无机化合物,化学式MnSO4,是一个粉红色固体,化学实验室常用的锰(II)盐之一。硫酸锰可由二氧化锰和二氧化硫反应得到:
- Histology at KUMC堪萨斯大学(英语:University of Kansas)是一所美国堪萨斯州的公立研究型大学。主校区位于堪萨斯州劳伦斯,另外还有堪萨斯城和欧弗兰帕克两处校区。堪萨斯大学由劳伦斯市民在1865
- 生物特征识别生物识别技术(biometrics,也称生物测定学),是指用数理统计方法对生物进行分析,现在多指对生物体(一般特指人)本身的生物特征(英语:Biosignature)来区分生物体个体的计算机技术。研究领
- 维姆·文德斯恩斯特·威廉·“维姆”·文德斯(德语:Ernst Wilhelm "Wim" Wenders,1945年8月14日-),出生于德国杜塞尔多夫的电影导演、摄影师;曾荣获法国戛纳影展及德国柏林影展最佳影片导演;是德
- 联盟90/绿党联盟90/绿党(德语:Bündnis 90/Die Grünen, GRÜNE),是德国中间偏左的环境保护主义政党,亦是全球最早的绿色政治组织,提倡绿色政治,反对扩军,主张和平、反核能,主张回归自然的生活方
- 江苏开放大学江苏开放大学,原江苏广播电视大学,是位于江苏省南京市的一所公办成人高等院校,采用电视广播、文字音像、远程网络进行教学。学校在全省设12所市电大以及众多分校。省电大有定淮