对称多项式

✍ dations ◷ 2025-07-21 09:01:47 #数学公式,多项式,对称

数学中的对称多项式是一种特殊的多元多项式。假设一个元多项式(1, 2, ..., ),当其中的个不定元任意交换后,多项式仍维持不变,就称其为对称多项式。严格的说法是,如果对任意的元置换,都有((1), (2), ..., ()) = (1, 2, ..., ),就说是对称多项式。

对称多项式最早是在出现在对一元多项式方程求根的研究中。一元多项式方程的系数可以用它的根的多项式来表达。而多项式的任何一个根的地位理当与余者都相同,所以这类多项式中,不定元进行置换不应当改变多项式。从这个角度来说,将多项式方程的根构成的系数多项式称为基本对称多项式是合理的。有定理说明,任意的对称多项式都可以表达为基本对称多项式的多项式。

以下是两个变数的对称多项式的例子:

以下是三个变数的对称多项式的例子:

并不是所有多项式都是对称的,例如 P ( X 1 , X 2 ) = X 1 2 X 2 {\displaystyle P(X_{1},X_{2})=X_{1}-2X_{2}} (1, …, ) 也可以用前 n 个对称多项式表示,例如

与单项对称多项式以及完全齐次对称多项式不同的是,一个 系数的对称多项式可能无法被表示成 n 个变数的 系数多项式,其中各变数代入次方和多项式 p1(X1, …, Xn), …, pn(X1, …, Xn)。例如对 n = 2,对称多项式

只能被表达成

然而,如果有 3 个变数的话,情况又变得不同

如果将上式的 X3 代入 0,也可以得到一个 2 个变数情况的表示式,然而该表示式中包含多项式 p3,因此不适用于 2 变数的叙述条件。从上述例子可以看出,不同的变数个数可能会影响到同一个单项对称多项式是否能被次方和对称多项式以整系数的代数组合表达。然而,对于 n ≥ 2,基本对称多项式 en 都不能表达成次方和对称多项式的整系数代数组合表达(注意到 n = 1 时 e1 = p1)。借由牛顿恒等式可以很容易推得上述结论,并且会有其中若干个系数的分母是 n。因为这个缘故,前述的结论只在任何包含有理数的环中成立,在有限特征的环中不成立。

以下用a表示对称多项式,s表示等幂和:

r = 1 n ( x x r ) = r = 0 n a r x r = 0 , s m = r = 1 n x r m {\displaystyle \prod _{r=1}^{n}(x-x_{r})=\sum _{r=0}^{n}a_{r}x^{r}=0,s_{m}=\sum _{r=1}^{n}x_{r}^{m}}

s m + a 1 s m 1 + a 2 s m 2 + . . . + a m 1 s 1 + m a m = 0 {\displaystyle s_{m}+a_{1}s_{m-1}+a_{2}s_{m-2}+...+a_{m-1}s_{1}+ma_{m}=0}

证明如下:

( i = 1 n k i x i r ) i 1 i 2 . . . i s r x i 1 x i 2 . . . x i s r = i 1 i 2 . . . i s r k i 1 x i 1 r + 1 x i 2 . . . x i s r + i 1 i 2 . . . i s r k i 1 x i 1 r x i 2 . . . x i s r + 1 {\displaystyle \displaystyle (\sum _{i=1}^{n}k_{i}x_{i}^{r})\sum _{i_{1}\neq i_{2}\neq ...\neq i_{s-r}}x_{i_{1}}x_{i_{2}}...x_{i_{s-r}}=\sum _{i_{1}\neq i_{2}\neq ...\neq i_{s-r}}k_{i_{1}}x_{i_{1}}^{r+1}x_{i_{2}}...x_{i_{s-r}}+\sum _{i_{1}\neq i_{2}\neq ...\neq i_{s-r}}k_{i_{1}}x_{i_{1}}^{r}x_{i_{2}}...x_{i_{s-r+1}}}

i 1 i 2 . . . i s 1 k i 1 x i 1 2 x i 2 . . . x i s 1 + i 1 i 2 . . . i s k i 1 x i 1 1 x i 2 . . . x i s i 1 i 2 . . . i s 2 k i 1 x i 1 3 x i 2 . . . x i s 2 i 1 i 2 . . . i s 1 k i 1 x i 1 2 x i 2 . . . x i s 1 + . . . {\displaystyle \displaystyle \sum _{i_{1}\neq i_{2}\neq ...\neq i_{s-1}}k_{i_{1}}x_{i_{1}}^{2}x_{i_{2}}...x_{i_{s-1}}+\sum _{i_{1}\neq i_{2}\neq ...\neq i_{s}}k_{i_{1}}x_{i_{1}}^{1}x_{i_{2}}...x_{i_{s}}-\sum _{i_{1}\neq i_{2}\neq ...\neq i_{s-2}}k_{i_{1}}x_{i_{1}}^{3}x_{i_{2}}...x_{i_{s-2}}-\sum _{i_{1}\neq i_{2}\neq ...\neq i_{s-1}}k_{i_{1}}x_{i_{1}}^{2}x_{i_{2}}...x_{i_{s-1}}+...}

( 1 ) s 1 i 1 k i 1 x i 1 s + i 1 i 2 . . . i s k i 1 x i 1 1 x i 2 . . . x i s = r = 1 s 1 ( 1 ) r ( i = 1 n k i x i r ) i 1 i 2 . . . i s r x i 1 x i 2 . . . x i s r {\displaystyle \displaystyle (-1)^{s-1}\sum _{i_{1}}k_{i_{1}}x_{i_{1}}^{s}+\sum _{i_{1}\neq i_{2}\neq ...\neq i_{s}}k_{i_{1}}x_{i_{1}}^{1}x_{i_{2}}...x_{i_{s}}=\sum _{r=1}^{s-1}(-1)^{r}(\sum _{i=1}^{n}k_{i}x_{i}^{r})\sum _{i_{1}\neq i_{2}\neq ...\neq i_{s-r}}x_{i_{1}}x_{i_{2}}...x_{i_{s-r}}}

两项时使等幂和分解为积与和的组合,如 x 1 2 + x 2 2 = ( x 1 + x 2 ) 2 2 x 1 x 2 {\displaystyle x_{1}^{2}+x_{2}^{2}=(x_{1}+x_{2})^{2}-2x_{1}x_{2}}

用数学归纳法可证明高维的形式:

m = n = 3 {\displaystyle m=n=3}

也可以把对称多项式表达成等幂和:

m = n = 3 {\displaystyle m=n=3}

相关

  • 4-磷酸二乙基色胺4-磷酸二乙基色胺(英语:Ethocybin CEY-19 4-phosphoryloxy-DET 4-PO-DET)是生物碱裸盖菇素(4-磷酸二甲基色胺)的同系物,也是色胺家族中的一种半合成迷幻药物。
  • 硫酸二乙酯硫酸二乙酯是硫酸与两分子乙醇形成的硫酸酯。为无色油状液体,有薄荷香。不溶于水,溶于乙醚和乙醇。遇水缓慢分解,热水中剧烈分解为硫酸单乙酯。有毒。可能致癌。用作乙基化剂,用
  • 函可案函可案发生于顺治四年(1647年)的清朝第一起文字狱。顺治四年(1647年)丁亥四月,一位法号函可的和尚,原是明朝礼部尚书韩日缵的长子,因藏有“逆书”《再变记》而遭到满洲大将巴山、张
  • 木曾木曾郡(日语:木曽郡/きそぐん Kiso gun */?)为长野县的一郡。现辖有以下3町3村。
  • 欧亚草原欧亚大草原是横贯亚欧大陆的广阔温带草原、稀树草原和疏灌丛地带,西起匈牙利、乌克兰,东至蒙古和中国东北,也是当代亚欧大陆桥经过的地区。下分满洲草原、蒙古草原、乌拉尔-里
  • Mesozoa中生动物是一种多肉海洋无脊椎寄生动物,现今依然不清楚它们是退化了的扁形动物,还是独立发展出的。一般而言,这些细小、难以理解的生物是由包附在一个或多个生殖细胞上的纤毛种
  • 外部性外部性(英语:Externality)是指个体经济单位的行为对社会或者其他个人部门造成了影响(例如环境污染)却没有承担相应的义务或获得回报,亦称外部成本、外部效应或溢出效应。这种外部
  • 围栏围栏,又叫篱笆、栅栏、护栏,于中国北方则多称杖子。为用来保护院子、田园及园艺的一种设施,一般都是由棍子、竹子、芦苇、灌木、石头构成,依种类不同上有其他材料(如:金属栅栏、塑
  • 史蒂文·利斯伯吉尔史蒂文·利斯伯吉尔(英语:Steven Lisberger,1951年4月24日-)是一名美国电影男导演、制片人人及编剧,1982年曾指导拍摄《电子世界争霸战》而闻名。
  • 刨子是一种木工工具,用来刨直、削薄、出光、作平物面。将刨刃安装在坚实刨身上,再将整个刨身再工件上移动可以削出厚薄均匀的刨花。由于刨身具有一定长度,从而自然的切削木材突