首页 >
埃伦费斯特定理
✍ dations ◷ 2025-07-18 23:02:00 #埃伦费斯特定理
在量子力学里,埃伦费斯特定理(Ehrenfest theorem)表明,量子算符的期望值对于时间的导数,跟这量子算符与哈密顿算符的对易算符,两者之间的关系,以方程表达为其中,
A
{displaystyle A}
是某个量子算符,
⟨
A
⟩
{displaystyle langle Arangle }
是它的期望值,
H
{displaystyle H}
是哈密顿算符,
t
{displaystyle t}
是时间,
ℏ
{displaystyle hbar }
是约化普朗克常数。埃伦费斯特定理是因物理学家保罗·埃伦费斯特命名。在量子力学的海森堡绘景里,埃伦费斯特定理非常显而易见;取海森堡方程的期望值,就可以得到埃伦费斯特定理。埃伦费斯特定理与哈密顿力学的刘维尔定理密切相关;刘维尔定理使用的泊松括号,对应于埃伦费斯特定理的对易算符。实际上,从根据经验法则,将对易算符换为泊松括号乘以
i
ℏ
{displaystyle ihbar }
,再取
i
ℏ
{displaystyle ihbar }
趋向于 0 的极限,含有对易算符的量子定理就可以改变为含有泊松括号的经典定理。假设,一个物理系统的量子态为
Φ
(
x
,
t
)
{displaystyle Phi (x, t)}
,则算符
A
{displaystyle A}
的期望值对于时间的导数为薛定谔方程表明哈密顿算符
H
{displaystyle H}
与时间
t
{displaystyle t}
的关系为其共轭复数为因为哈密顿算符是厄米算符,
H
∗
=
H
{displaystyle H^{*}=H}
。所以,将这三个方程代入
d
d
t
⟨
A
⟩
{displaystyle {frac {d}{dt}}langle Arangle }
的方程,则可得到所以,埃伦费斯特定理成立:使用埃伦费斯特定理,可以简易地证明,假若一个物理系统的哈密顿量显性地不含时间,则这系统是保守系统。从埃伦费斯特定理,可以计算任何算符的期望值对于时间的导数。特别而言,速度的期望值和加速度的期望值。知道这些资料,就可以分析量子系统的运动行为。思考哈密顿算符
H
{displaystyle H}
:假若,哈密顿量显性地不含时间,
∂
H
∂
t
=
0
{displaystyle {frac {partial H}{partial t}}=0}
,则哈密顿量是个常数
H
0
{displaystyle H_{0}}
。试想一个质量为
m
{displaystyle m}
的粒子,移动于一维空间.其哈密顿量是其中,
x
{displaystyle x}
为位置,
p
{displaystyle p}
是动量,
V
{displaystyle V}
是位势。应用埃伦费斯特定理,由于
x
p
p
−
p
p
x
=
i
2
ℏ
p
{displaystyle xpp-ppx=i2hbar p}
,位置的期望值对于时间的导数等于速度的期望值:这样,可以得到动量
p
{displaystyle p}
的期望值。应用埃伦费斯特定理,由于
p
{displaystyle p}
与自己互相交换,所以,
[
p
,
p
2
]
=
0
{displaystyle =0}
。又在坐标空间里,动量算符
p
=
ℏ
i
∂
∂
x
{displaystyle p={frac {hbar }{i}}{frac {partial }{partial x}}}
不含时间:
∂
p
∂
t
=
0
{displaystyle {frac {partial p}{partial t}}=0}
。所以,将泊松括号展开,使用乘法定则,在量子力学里,动量的期望值对于时间的导数,等于作用力
F
{displaystyle F}
的期望值。取经典极限,
⟨
∂
V
(
x
)
∂
x
⟩
≈
∂
V
(
⟨
x
⟩
)
∂
⟨
x
⟩
{displaystyle leftlangle {frac {partial V(x)}{partial x}}rightrangle approx {frac {partial V(langle xrangle )}{partial langle xrangle }}}
,则可得到一组完全的量子运动方程:这组量子运动方程,精确地对应于经典力学的运动方程:取“经典极限”,量子力学的定律约化为经典力学的定律。这结果也时常被称为埃伦费斯特定理。这经典极限是什么呢?标记
V
′
(
x
)
{displaystyle V,'(x)}
为
∂
V
(
x
)
∂
x
{displaystyle {frac {partial V(x)}{partial x}}}
。设定
⟨
x
⟩
=
x
0
{displaystyle langle xrangle =x_{0}}
。泰勒展开
V
′
(
x
)
{displaystyle V,'(x)}
于
x
0
{displaystyle x_{0}}
:由于
⟨
x
−
x
0
⟩
=
0
{displaystyle langle x-x_{0}rangle =0}
,
⟨
(
x
−
x
0
)
2
⟩
=
σ
x
2
{displaystyle langle (x-x_{0})^{2}rangle =sigma _{x}^{2}}
,这近似方程右手边的第二项目就是误差项目。只要这误差项目是可忽略的,就可以取经典极限。而这误差项目的大小跟以下两个因素有关:
相关
- 招魂术招魂术(英语:Necromancy)是指一种与死者灵魂沟通的巫术,在人类历史上已经存在一段很长的时间,通常和黑巫术或巫术有所关联。
- 生育控制生育控制(英语:Birth control)也称为避孕,是避免怀孕的方式或是设备。而计划生育即对生育子女的数量和时间做出计划,其中也会包括取得及使用避孕设备或方式。从远古时代以来,人类
- 运动心理学异常心理学 行为遗传学 生物心理学 心理药物学 认知心理学 比较心理学 跨文化心理学 文化心理学 差异心理学(英语:Differential psychology) 发展心理学 演化心理学 实验心理学
- 先正达先正达(英语:Syngenta)总部位于瑞士巴塞尔,2000年由诺华公司和农用化学品制造商捷利康合并而成,目前是全球最大的农药生产商。先正达的业务遍及全球90多个国家和地区,拥有员工2万1
- 俄罗斯苏维埃社会主义共和国全俄中央执行委员会全俄苏维埃代表大会(1917–1938)最高苏维埃(1938–1990)俄罗斯苏维埃联邦社会主义共和国(俄语:Российская Советская Федеративн
- 克里夫兰骑士克利夫兰骑士(英语:Cleveland Cavaliers,简称Cavs),是一支位于美国俄亥俄州克利夫兰的NBA篮球队,分属于东部的中部赛区,成立于1970年,主场为速贷球馆。1970年进入联盟的克利夫兰骑士
- 陈发虎陈发虎(1962年12月-),陕西丹凤县人,自然地理学家和环境变化专家。1984年毕业于兰州大学地理系,1987年、1990年又取得兰大自然地理学硕士和博士学位。担任兰州大学资源环境学院教授
- 缅甸总统政治主题缅甸总统目前是缅甸联邦共和国的国家元首。1997年到2011年,国家元首是“国家和平与发展委员会主席”。2011年缅甸实行议会制,以总统为最高领导人。2016年增设类似缅甸
- 左旋多巴L-多巴(英语:L-DOPA,全称3,4-二羟苯丙氨酸)是酪氨酸经酪氨酸羟化酶的作用下羟化产生的一种氧化产物,具有儿茶酚羟基,可进一步生成另外一些有生物活性的物质:L-多巴在酪氨酸酶的作用
- 日本航空123号班机日本航空123号班机空难(日语:日本航空123便墜落事故/にほんこうくう123びんついらくじこ Nihon kōkū 123 bin Tsuiraku Jiko ?),发生于1985年8月12日,为世界上涉及单一飞机的