首页 >
欧氏几何
✍ dations ◷ 2025-09-07 01:55:13 #欧氏几何
欧几里得几何指按照欧几里得的《几何原本》构造的几何学。欧几里得几何有时就指二维平面上的几何,即平面几何,本文主要描述平面几何。三维空间的欧几里得几何通常叫做立体几何,高维的情形请参看欧几里得空间。数学上,欧几里得几何是指二维平面和三维空间中的几何,基于点线面假设(英语:Point–line–plane postulate)。数学家也用这一术语表示具有相似性质的高维几何。其中公设五又称之为平行公设(Parallel Axiom),叙述比较复杂,这个公设衍生出“三角形内角和等于一百八十度”的定理。在高斯(F. Gauss, 1777年—1855年)的时代,公设五就备受质疑,俄罗斯数学家罗巴切夫斯基(Nikolay Ivanovitch Lobachevski)、匈牙利数学家波约(Bolyai)阐明第五公设只是公理系统的一种可能选择,并非必然的几何真理,也就是“三角形内角和不一定等于一百八十度”,从而发现非欧几里得的几何学,即非欧几何(non-Euclidean geometry)。欧几里得几何的传统描述是一个公理系统,通过有限的公理来证明所有的真命题。欧几里得平面几何的五条公理(公设)是:第五条公理称为平行公理(平行公设),可以导出下述命题:平行公理并不像其他公理那么显然。许多几何学家尝试用其他公理来证明这条公理,但都没有成功。19世纪,通过构造非欧几里得几何,说明平行公理是不能被证明的(若从上述公理体系中去掉平行公理,则可以得到更一般的几何,即绝对几何(英语:Absolute geometry))。从另一方面讲,欧几里得几何的五条公理(公设)并不完备。例如,该几何中的定理:在任意直线段上可作一等边三角形。他用通常的方法进行构造:以线段为半径,分别以线段的两个端点为圆心作圆,将两个圆的交点作为三角形的第三个顶点。然而,他的公理并不保证这两个圆必定相交。因此,许多公理系统的修订版本被提出,其中有希尔伯特公理系统(英语:Hilbert's axioms)。欧几里得还提出了五个一般概念,也可以作为公理。当然,之后他还使用量的其他性质。如今,欧几里得几何的构造通常不是通过公理化方法,而是通过解析几何。通过这种方法,可以像证明定理一样证明欧几里得几何(或非欧几里得几何)中的公理。这一方法没有公理方法那么漂亮,但绝对简练。首先,定义点的集合为实数对
(
x
,
y
)
{displaystyle (x,y)}
的集合。给定两个点
P
=
(
x
,
y
)
{displaystyle P=(x,y)}
和
Q
=
(
z
,
t
)
{displaystyle Q=(z,t)}
,定义距离:这就是欧几里得度量。所有其他概念,如直线、角、圆可以通过作为实数对的点和之间的距离来定义。例如通过点
P
{displaystyle P}
和
Q
{displaystyle Q}
的直线可以定义成点的集合
A
{displaystyle A}
满足
相关
- 乳房摄影术乳房摄影术(英语:Mammography)是利用低剂量(约为 0.7毫西弗)的X光检查人类(主要是女性)的乳房,它能侦测各种乳房肿瘤、囊肿等病灶,有助于早期发现乳癌,并降低其死亡率。除了影像检查之
- 松柏松柏目(学名:Pinales)在生物分类学上是松柏纲中的一个目,传统分类上的裸子植物门包括五个纲(松柏纲、苏铁纲、银杏纲、买麻藤纲、红豆杉纲)。现因此五支裸子植物并非单系群,而将其
- 皮埃尔-奥古斯特·雷诺阿皮埃尔-奥古斯特·雷诺阿(Pierre-Auguste Renoir,1841年2月25日-1919年12月3日)是一位著名的法国画家,也是印象派发展史上的领导人物之一。其画风承袭彼得·保罗·吕本斯与尚-安
- 瑞典中央银行瑞典中央银行(瑞典语:Sveriges Riksbank、Riksbanken),又名瑞典国家银行、旧译瑞典银行,始创于1668年,是瑞典的中央银行,也是世界上历史最悠久的中央银行。在1968年成立三百周年时,
- 天弘科技天弘科技(Celestica)是一所从事电子专业制造服务(EMS)的加拿大跨国公司,总部位于多伦多。它在美洲、欧洲和亚洲的11个国家设立了20多个办事点。天弘科技的多伦多总部最初是IBM的
- 十一酸十一酸(Undecylic acid),分子式CH3(CH2)9COOH。不饱和脂肪酸
- 信号级联信号转导(英语:Signal transduction;也译作讯息传导)是化学或物理信号作为一系列分子事件通过细胞传递的过程,最常见的是蛋白激酶催化的蛋白质磷酸化,最终导致细胞反应。负责检测
- 端华侧福晋陈佳氏,护军色勒之女 侧福晋高佳氏,护军高福之女 侧福晋白佳氏,护军校和兴之女端华(满语:ᡩᡠᠸᠠᠨᡥᡡᠸᠠ,穆麟德:Duwanhūwa,太清:Duwanhvwa,1807年-1861年),爱新觉罗氏,镶蓝旗
- 面包列表以下是各种面包的列表。
- 恐头兽类恐头兽亚目(学名:Dinocephalia)是个大型早期兽孔目演化支,繁盛于二叠纪的瓜德鲁普世,但之后灭绝而且没有留下任何后代。除了巴莫鳄亚目与始巨鳄科以外,恐头兽类是兽孔目中最原始的