电感

✍ dations ◷ 2025-10-11 12:25:24 #物理量,电路,电动力学

电感(Inductance)是闭合回路的一种属性,即当通过闭合回路的电流改变时,会出现电动势来抵抗电流的改变。如果这种现象出现在自身回路中,那么这种电感称为自感(self-inductance),是闭合回路自己本身的属性。假设一个闭合回路的电流改变,由于感应作用在另外一个闭合回路中产生电动势,这种电感称为互感(mutual inductance)。电感以方程表达为

其中, E {\displaystyle {\mathcal {E}}} 是电动势, L {\displaystyle L} 是电感, i {\displaystyle i} 是电流, t {\displaystyle t} 是时间。

术语“电感”是1886年由奥利弗·赫维赛德命名。通常自感是以字母“L”标记,这可能是为了纪念物理学家海因里希·楞次的贡献。互感是以字母“M”标记,是其英文(Mutual Inductance)的第一个字母。采用国际单位制,电感的单位是亨利(henry),标记为“H”,是因美国科学家约瑟·亨利命名。1 H = 1 Wb/A。

电感器是专门用在电路里实现电感的电路元件。螺线管是一种简单的电感器,指的是多重卷绕的导线(称为“线圈”),内部可以是空心的,或者有一个金属芯。螺线管的电感是自感。变压器是两个耦合的线圈形成的电感器,由于具有互感属性,是一种基本磁路元件。在电路图中电感的电路符号多半以L开头,例如,L01、L02、L100、L201等。

应用麦克斯韦方程组,可以计算出电感。很多重要案例,经过简化程序后,可以被解析。当涉及高频率电流和伴随的集肤效应,经过解析拉普拉斯方程,可以得到面电流密度与磁场。假设导体是纤细导线,自感仍旧跟导线半径、内部电流分布有关。假若导线半径超小于其它长度尺寸,则这电流分布可以近似为常数(在导线的表面或体积内部)。

如右图所示,流动于闭合回路的含时电流 i ( t ) {\displaystyle i(t)} 所产生的含时磁通量 Φ ( i ) {\displaystyle \Phi (i)} ,根据法拉第电磁感应定律,会促使闭合回路本身出现感应电动势 E {\displaystyle {\mathcal {E}}}

其中, N {\displaystyle N} 是闭合回路的卷绕匝数。

设定电感 L {\displaystyle L}

则感应电动势与含时电流之间的关系为

由此可知,一个典型的电感元件中,在其几何与物理特性都固定的状况下,产生的电压 v {\displaystyle v} 为:

电感的作用是抵抗电流的变化,但是这种作用与电阻阻碍电流的流动是有区别的。电阻阻碍电流的流动的特征是消耗电能,而电感则纯粹是抵抗电流的变化。当电流增加时电感抵抗电流的增加;当电流减小时电感抵抗电流的减小。电感抵抗电流变化的过程并不消耗电能,当电流增加时它会将能量以磁场的形式暂时储存起来,等到电流减小时它又会将磁场的能量释放出来,其效应就是抵抗电流的变化。

如右图所示,流动于闭合回路1的含时电流 i 1 ( t ) {\displaystyle i_{1}(t)} ,会产生磁通量 Φ 2 ( t ) {\displaystyle \Phi _{2}(t)} 穿过闭合回路2,促使闭合回路2出现感应电动势 E 2 {\displaystyle {\mathcal {E}}_{2}} 。穿过闭合回路2的磁通量和流动于闭合回路1的含时电流,有线性关系,称为互感 M 21 {\displaystyle M_{21}} ,以方程表达为。

计算互感,可使用纽曼公式(Neumann formula):

其中, μ 0 {\displaystyle \mu _{0}} 是磁常数, C 1 {\displaystyle \mathbb {C} _{1}} 是闭合回路1, C 2 {\displaystyle \mathbb {C} _{2}} 是闭合回路2, X 1 {\displaystyle \mathbf {X} _{1}} 是微小线元素 d 1 {\displaystyle \mathrm {d} {\boldsymbol {\ell }}_{1}} 的位置, X 2 {\displaystyle \mathbf {X} _{2}} 是微小线元素 d 2 {\displaystyle \mathrm {d} {\boldsymbol {\ell }}_{2}} 的位置。

由此公式可见,两个线圈之间互感相同: M 12 = M 21 {\displaystyle M_{12}=M_{21}} ,且互感是由两个线圈的形状、尺寸和相对位置而确定。

穿过闭合回路2的磁通量 Φ 2 ( t ) {\displaystyle \Phi _{2}(t)}

其中, S 2 {\displaystyle \mathbb {S} _{2}} 是边缘为 C 2 {\displaystyle \mathbb {C} _{2}} 的任意曲面, d a 2 {\displaystyle \mathrm {d} \mathbf {a} _{2}} 是微小面元素。

改用磁矢势 A 1 {\displaystyle \mathbf {A} _{1}} 计算:

其中, 2 {\displaystyle \nabla _{2}} 是对于变矢量 X 2 {\displaystyle \mathbf {X} _{2}} 的偏微分。

应用斯托克斯公式,可以得到

磁矢势 A 1 ( X 2 , t ) {\displaystyle \mathbf {A} _{1}(\mathbf {X} _{2},t)} 的定义式为

磁通量与流动于闭合回路1 C 1 {\displaystyle \mathbb {C} _{1}} 的电流 i 1 {\displaystyle i_{1}} 的关系式为

所以,互感为

这方程称为纽曼公式(Neumann formula)。注意到对换闭合回路 C 1 {\displaystyle \mathbb {C} _{1}} C 2 {\displaystyle \mathbb {C} _{2}} 不会改变结果, M 21 = M 12 {\displaystyle M_{21}=M_{12}} ,因此,可以以变数 M {\displaystyle M} 统一代表。

类似地,穿过闭合回路1的磁通量 Φ 1 ( t ) {\displaystyle \Phi _{1}(t)}

除去所有下标,令 C {\displaystyle \mathbb {C} } C {\displaystyle \mathbb {C} '} 代表同一闭合回路,自感以方程表示为

X 1 = X 1 {\displaystyle \mathbf {X} _{1}=\mathbf {X} '_{1}} 时,这积分可能会发散,需要特别加以处理。另外,若假设闭合回路为无穷细小,则在闭合回路附近,磁场会变得无穷大,磁通量也会变得无穷大,所以,必须给予闭合回路有限尺寸,设定其截面半径 r 0 {\displaystyle r_{0}} 超小于径长 0 {\displaystyle \ell _{0}}

有很多种方法可以化解这困难。例如,令 C {\displaystyle \mathbb {C} } 为闭合回路的中心曲轴,令 C {\displaystyle \mathbb {C} '} 为闭合回路的表面,则 X 1 X 1 {\displaystyle \mathbf {X} _{1}\neq \mathbf {X} '_{1}} ,这积分就不会发散了。

将前面论述加以推广,思考 K {\displaystyle K} 条闭合回路,设定第 k {\displaystyle k} 条闭合回路的卷绕匝数为 N k {\displaystyle N_{k}} ,载有电流 i k {\displaystyle i_{k}} ,则其磁链 N k Φ k {\displaystyle N_{k}\Phi _{k}}

其中, Φ k {\displaystyle \Phi _{k}} 是穿过第 k {\displaystyle k} 条闭合回路的磁通量, L k , k = L k {\displaystyle L_{k,k}=L_{k}} 是自感, L k , n = M k , n , k n {\displaystyle L_{k,n}=M_{k,n},k\neq n} 是互感。

由于第 n {\displaystyle n} 条闭合回路对于磁通量 Φ k {\displaystyle \Phi _{k}} 的总贡献是卷绕匝数乘以电流,即 N n i n {\displaystyle N_{n}i_{n}} ,所以, L k , n {\displaystyle L_{k,n}} 与乘积 N k N n {\displaystyle N_{k}N_{n}} 成正比。

从法拉第电磁感应定律,可以得到

其中, v k {\displaystyle v_{k}} 是第 k {\displaystyle k} 条闭合回路的感应电压。

k {\displaystyle k} 条闭合回路的电功率 p k {\displaystyle p_{k}}

假设原先所有电流为零,即 i 1 = i 2 = = i K = 0 {\displaystyle i_{1}=i_{2}=\dots =i_{K}=0} ,储存于所有闭合回路的总磁能为 0 {\displaystyle 0} 。现在,将第一条闭合回路的电流 i 1 {\displaystyle i_{1}} 平滑地从 0 {\displaystyle 0} 增加到 I 1 {\displaystyle I_{1}} ,同时保持其它闭合回路的电流不变,则储存于第一条闭合回路的磁能 W 1 {\displaystyle W_{1}}

然后,将第二条闭合回路的电流 i 2 {\displaystyle i_{2}} 平滑地从 0 {\displaystyle 0} 增加到 I 2 {\displaystyle I_{2}} ,同时保持其它闭合回路的电流不变,则储存于第二条闭合回路的磁能 W 2 {\displaystyle W_{2}}

案照这方法继续地计算,储存于第 k {\displaystyle k} 条闭合回路的磁能 W k {\displaystyle W_{k}}

所以,当每一个闭合回路的电流都平滑地增加到其最终电流之后,储存于所有闭合回路的总磁能 W {\displaystyle W}

假设将 I n {\displaystyle I_{n}} I k {\displaystyle I_{k}} 的数值交换,总磁能 W {\displaystyle W} 不会改变。满足可积分条件 2 W I n I k = 2 W I k I n {\displaystyle {\frac {\partial ^{2}{W}}{\partial I_{n}\partial I_{k}}}={\frac {\partial ^{2}{W}}{\partial I_{k}\partial I_{n}}}} ,必需要求 L k , n = L

相关

  • 搔痒搔痒(Tickling)是一种碰触身体,会使对方产生自发性抽动或是使对方笑的方式。搔痒的英文 "tickle" 帮助·信息源自古英文的tikelen,可能是ticken(轻轻碰触)的反复形。1897年时心理
  • 见部,为汉字索引中的部首之一,康熙字典214个部首中的第一百四十七个(七划的则为第一个)。正体为七划部首,简体则归四划。见部大都以右、下方为部字。且无其他部首可用者将部首归
  • 德涅斯特河沿岸卢布德涅斯特河沿岸卢布(рублэ транснистрянэ)是位于摩尔多瓦东部的未被国际普遍承认的国家德涅斯特河沿岸摩尔达维亚共和国的流通货币。辅币单位戈比,1卢布=100
  • 圣诞老人圣诞老人或称耶诞老人(英语:Santa Claus、Saint Nicholas、Father Christmas,或简称Santa),也常被儿童称为圣诞老公公,西方文化中的一位人物,在圣诞节前夕会发送礼物,此人慷慨大方,经
  • 多伦多市轨道交通1号线1号央街-大学线(英语:Line 1 Yonge-University)是多伦多地铁的路线之一,首段于1954年落成,是多伦多以至全加拿大最早兴建的地铁路线。本线由多伦多运输局(TTC)营运,现时共有38个车站,
  • AIREn/an/an/an/an/an/an/an/an/an/a自身免疫调节因子(Autoimmune regulator)是人体内由AIRE基因表现的蛋白质。AIRE是在胸腺髓质表现的转录因子,使人体不会被自身的免疫系统攻击。
  • 南达尔帕蒂岛南达尔帕蒂岛(孟加拉语:দক্ষিণ তালপট্টি দ্বীপ、印地语:दक्षिण तालपटि द्वीप)为孟加拉国方称呼,印度方则称为新摩尔岛、新穆尔岛、普尔巴沙
  • 艾克纳方程艾克纳方程是质量守恒的定理,是有关河流中沉积物的质量守恒。最早是由奥地利气象学家及沉积物学家费利克斯·马力亚·埃克斯纳开始研究,艾克纳方程因此而得名。艾克纳方程的重
  • 米奥德拉格·日夫科维奇 (雕塑家)米奥德拉格·日夫科维奇(塞尔维亚语西里尔字母:Миодраг Живковић,塞尔维亚语拉丁字母:Miodrag Živković,1928年2月1日-2020年7月31日),南斯拉夫及塞尔维亚雕塑家,贝
  • 马里奥·加西亚·梅诺卡尔奥雷利奥·马里奥·加百列·弗朗西斯科·加西亚·梅诺卡尔·伊·杜拉(西班牙语:Aurelio Mario Gabriel Francisco García Menocal y Deop,1866年12月17日-1941年9月7日),古巴共和