算数阶层

✍ dations ◷ 2025-10-09 00:44:28 #数学,递归论,计算机科学

算术阶层是递归论或可计算性理论中的概念,将自然数的子集按照定义它们的公式的复杂度分类。

ϕ ( x ) {\displaystyle \phi (x)} 为自然数的语言中的公式,定义 ϕ {\displaystyle \phi } Δ 0 {\displaystyle \Delta _{0}} 公式当且仅当 ϕ {\displaystyle \phi } 中的所有量词都是有界量词(即形如 n < t {\displaystyle \exists n<t} n < t {\displaystyle \forall n<t} 的量词,其中 t {\displaystyle t} 为该语言中的项)。

定义 ϕ ( x ) {\displaystyle \phi (x)} Σ 1 0 {\displaystyle \Sigma _{1}^{0}} 公式当且仅当 ϕ ( x ) := n θ ( n , x ) {\displaystyle \phi (x):=\exists n\,\theta (n,x)} ,其中 θ {\displaystyle \theta } Δ 0 {\displaystyle \Delta _{0}} ;定义 ϕ {\displaystyle \phi } Π 1 0 {\displaystyle \Pi _{1}^{0}} 公式当且仅当 ϕ ( x ) := n θ ( n , x ) {\displaystyle \phi (x):=\forall n\,\theta (n,x)} ,其中 θ {\displaystyle \theta } Δ 0 {\displaystyle \Delta _{0}}

更进一步定义 ϕ ( x ) {\displaystyle \phi (x)} Σ n + 1 0 {\displaystyle \Sigma _{n+1}^{0}} 公式当且仅当 ϕ ( x ) := n θ ( n , x ) {\displaystyle \phi (x):=\exists n\,\theta (n,x)} ,其中 θ {\displaystyle \theta } Π n 0 {\displaystyle \Pi _{n}^{0}} 公式;定义 ϕ ( x ) {\displaystyle \phi (x)} Π n + 1 0 {\displaystyle \Pi _{n+1}^{0}} 公式当且仅当 ϕ ( x ) := n θ ( n , x ) {\displaystyle \phi (x):=\forall n\,\theta (n,x)} ,其中 θ {\displaystyle \theta } Σ n 0 {\displaystyle \Sigma _{n}^{0}} 公式。

A N {\displaystyle A\subseteq \mathbb {N} } ;若存在 Σ n 0 {\displaystyle \Sigma _{n}^{0}} 公式定义 A {\displaystyle A} 则称 A {\displaystyle A} Σ n 0 {\displaystyle \Sigma _{n}^{0}} 集合,若存在 Π n 0 {\displaystyle \Pi _{n}^{0}} 公式定义 A {\displaystyle A} 则称 A {\displaystyle A} Π n 0 {\displaystyle \Pi _{n}^{0}} 公式。(若有公式 ϕ {\displaystyle \phi } 与集合 A {\displaystyle A} ,使 A = { x | N ϕ ( x ) } {\displaystyle A=\{x\;\vert \;\mathbb {N} \vDash \phi (x)\}} ,则称 ϕ {\displaystyle \phi } 定义 A {\displaystyle A} 。)

若集合 A {\displaystyle A} 可以用图灵机(或任何等价的计算模型)计算得出,则称 A {\displaystyle A} Δ 0 {\displaystyle \Delta _{0}} 集合。若 A {\displaystyle A} 为递归可枚举集合则称 A {\displaystyle A} Σ 1 0 {\displaystyle \Sigma _{1}^{0}} 集合,若 A {\displaystyle A} 的补集 N A {\displaystyle \mathbb {N} \backslash A} 递归可枚举则称 A {\displaystyle A} Π 1 0 {\displaystyle \Pi _{1}^{0}} 集合。这一定义实际上与上面给出的定义是等价的。

更高阶层的算术类可以通过波斯特定理与可计算性联系起来:设 0 ( n ) {\displaystyle \mathbb {0} ^{(n)}} 为零不可解度的第 n {\displaystyle n} 次图灵跳跃,则任何集合 A {\displaystyle A} Σ n + 1 0 {\displaystyle \Sigma _{n+1}^{0}} 集合当且仅当 A {\displaystyle A} 可以用具备 0 ( n ) {\displaystyle \mathbb {0} ^{(n)}} 的预言机递归枚举;任何集合是 Π n + 1 0 {\displaystyle \Pi _{n+1}^{0}} 集合当且仅当其补集满足以上条件。

相关

  • 口腔颌面外科口腔颌面外科(英语:Oral and Maxillofacial Surgery)是一个现代医疗的外科,该外科主要治理头部、颈部、脸部、下颌、口腔和颌面部位,包括软组织和硬组织的损伤和疾病,并通过药物及
  • 阿基米德浮体原理阿基米德浮体原理(或直接称为阿基米德原理或浮力原理)是阿基米德发现的原理。该原理是说,浸在流体中的物体(全部或部分)受到竖直向上的浮力,其大小等于物体所排开流体的重力。其公
  • 革兰氏阴性革兰氏阴性菌(英语:Gram-negative bacteria)泛指革兰氏染色反应呈红色的细菌。在革兰氏染色实验中,首先添加了结晶紫,再添入另一种复染染料(通常使用番红),从而将所有的革兰氏阴性菌
  • 安全期避孕法安全期是指女性的一种生理周期,是指女性不会受孕的期间,与月经有关系。若安全期估算准确,且月经周期没有变化,可以在不进行其他避孕措施的情形下,在安全期进行性行为,但女性只是怀
  • 乌莎斯乌莎斯(उषः;uṣás-),梵语中曙光、黎明之意,吠陀教时代登场的提毗神祇(乌莎斯有时亦会被想像成多个复数体存在),梨俱吠陀1028首赞美诗中就有20首是献给她的。她是天父神特尤斯的
  • BIPM国际计量局(法语:Bureau international des poids et mesures,缩写:BIPM)是依1875年订定的米制公约,为维护国际单位制(SI制)所设立的3个组织中的1个。其宗旨为“确保国际度量衡标准
  • 是松诉合众国案是松诉合众国案(Korematsu v. United States,323 U.S. 214 (1944))是第二次世界大战期间美国最高法院于1944年以6比3作成一项判决,认定强制日裔美国人从太平洋沿岸地区迁移的命
  • 健康旅游健康旅游(Health Tourism)是一种利用各式天然资源的旅游模式。参考多位学者后,发现“健康旅游”与“保健旅游”其名词与解释至今仍无一致,存有交错混用情形(吴彬安,2007;萧淑慧
  • 幻影F1型战斗机幻影F1型战斗机(Dassault Mirage F1),是一种由法国达梭公司(Dassault)公司制造的中型空优战机,达梭将她定位为幻影3型战斗机的继承型号。为吸引更多国外客户,达梭在幻影F1设计上走
  • 龙珠Z 《龙珠Z》(日语:ドラゴンボールZ,英语:)是改编自日本漫画家鸟山明漫画《龙珠》第195话至第519话的内容,并于1989年4月26日到1996年1月31日播放的电视动画作品,共291话+2话特别篇