狭义相对论中的加速度

✍ dations ◷ 2025-10-06 19:05:43 #加速度,狭义相对论

狭义相对论中的加速度类似于牛顿力学中的概念,乃速度对于时间的微分。因为相对论中的洛伦兹转换及时间膨胀,时间与距离的概念变为复杂,因此“加速度”的定义也变得复杂。狭义相对论为平直闵可夫斯基时空的理论,即使加速度存在依然有效,前提是能量动量张量所造成的重力场效应可以忽略。否则,则需用到广义相对论以及弯曲时空来诠释。在地球表面附近,时空弯曲程度不明显,因此实务上采用狭义相对论来诠释物理现象仍是合宜作法,比如粒子加速器实验。

如同在外界惯性坐标系中的测量,三维空间中的普通加速度(称为“三维加速度”或“坐标加速度”)的转换式可以推导得出。此外作为一特例,也可用共动(comoving)的加速规来测量固有加速度。另一种有用的形式是四维加速度,其分量可透过洛伦兹转换在不同参考系中做连结。连结加速度与力的运动方程也可得到。几种特殊形式的加速物体运动方程以及它们的弯曲世界线可以透过对上述方程的积分求得。知名的特例如双曲运动(英语:hyperbolic motion (relativity)),适用于常数值纵向固有加速度的例子,以及等速率圆周运动。最后,在狭义相对论的架构下,描述加速参考系中的物理现象亦为可行。

历史演进上,在相对论发展的早年即已出现包含加速度的相对论性方程,在早年的教科书中有整理,如马克斯·冯·劳厄(1911年、1921年)或沃夫冈·泡利(1921年)。举例来说,运动方程以及加速度转换式于以下学者的论文中建立起来:亨德里克·洛伦兹(1899年、1904年)、儒勒·昂利·庞加莱(1905年)、阿尔伯特·爱因斯坦(1905年)、马克斯·普朗克(1906年);四维加速度、固有加速度与双曲运动的分析参见赫尔曼·闵可夫斯基 (1908年)、马克斯·玻恩(1909年)、古斯塔夫·赫格洛茨(英语:Gustav Herglotz)(1909年)、阿诺·索末菲(1910年)、冯·劳厄(1911年)。

在牛顿力学与狭义相对论中,三维加速度或坐标加速度的定义保持一致。 a = ( a x ,   a y ,   a z ) {\displaystyle \mathbf {a} =\left(a_{x},\ a_{y},\ a_{z}\right)} 是速度 u = ( u x ,   u y ,   u z ) {\displaystyle \mathbf {u} =\left(u_{x},\ u_{y},\ u_{z}\right)} 对坐标时间的一阶导数,亦即是位置 r = ( x ,   y ,   z ) {\displaystyle \mathbf {r} =\left(x,\ y,\ z\right)} 对坐标时间的二阶导数:

然而在另一相异的惯性参考系中做三维加速度测量时,两项理论的预测就出现重大歧异。牛顿力学中,时间是绝对的( t = t {\displaystyle t'=t} ),采用的惯性系转换式为伽利略转换。因此,从伽利略转换推导而得的三维加速度在所有惯性系中皆相同:

相反地,在狭义相对论中, r {\displaystyle \mathbf {r} } t {\displaystyle t} 两者皆与洛伦兹转换相依,因此三维加速度 a {\displaystyle \mathbf {a} } 及其分量在不同惯性系也各不相同。当惯性系间的相对速度是沿着x轴,即 v = v x {\displaystyle v=v_{x}} γ v = 1 / 1 v 2 / c 2 {\displaystyle \gamma _{v}=1/{\sqrt {1-v^{2}/c^{2}}}} 为相对应的洛伦兹因子),洛伦兹转换式为:

x = γ v ( x v t ) y = y z = z t = γ v ( t v c 2 x ) x = γ v ( x + v t ) y = y z = z t = γ v ( t + v c 2 x ) {\displaystyle {\begin{array}{c|c}{\begin{aligned}x'&=\gamma _{v}(x-vt)\\y'&=y\\z'&=z\\t^{\prime }&=\gamma _{v}\left(t-{\frac {v}{c^{2}}}x\right)\end{aligned}}&{\begin{aligned}x&=\gamma _{v}(x'+vt')\\y&=y'\\z&=z'\\t&=\gamma _{v}\left(t'+{\frac {v}{c^{2}}}x'\right)\end{aligned}}\end{array}}}

 

 

 

 

(1a)

或是对于一长度 v {\displaystyle v} 及任意方向的速度矢量 v = ( v x ,   v y ,   v z ) {\displaystyle \mathbf {v} =\left(v_{x},\ v_{y},\ v_{z}\right)} (其中 | v | = v = v x 2 + v y 2 + v z 2 {\displaystyle |\mathbf {v} |=v={\sqrt {v_{x}^{2}+v_{y}^{2}+v_{z}^{2}}}} ),洛伦兹转换式为:

r = r + v t = γ v ( t r v c 2 ) r = r + v t = γ v ( t + r v c 2 ) {\displaystyle {\begin{array}{c|c}{\begin{aligned}\mathbf {r} '&=\mathbf {r} +\mathbf {v} \left\\t^{\prime }&=\gamma _{v}\left(t-{\frac {\mathbf {r\cdot v} }{c^{2}}}\right)\end{aligned}}&{\begin{aligned}\mathbf {r} &=\mathbf {r} '+\mathbf {v} \left\\t&=\gamma _{v}\left(t'+{\frac {\mathbf {r'\cdot v} }{c^{2}}}\right)\end{aligned}}\end{array}}}

 

 

 

 

(1b)

为了求得三维加速度的转换式,必须分别对洛伦兹转换式中的空间坐标 r {\displaystyle \mathbf {r} } r {\displaystyle \mathbf {r} '} 做时间 t {\displaystyle t} t {\displaystyle t'} 的微分。首先是得到三维速度 u {\displaystyle \mathbf {u} } u {\displaystyle \mathbf {u} '} 的转换式(亦称为速度加成式);尔后再次做时间 t {\displaystyle t} t {\displaystyle t'} 的微分运算而得到三维加速度 a {\displaystyle \mathbf {a} } a {\displaystyle \mathbf {a} '} 的转换式。从式(1a)出发,所得到的转换式为平行(x方向)与垂直(y、z方向)于速度 v = v x {\displaystyle v=v_{x}} 之加速度:

a x = a x γ v 3 ( 1 u x v c 2 ) 3 a y = a y γ v 2 ( 1 u x v c 2 ) 2 + a x u y v c 2 γ v 2 ( 1 u x v c 2 ) 3 a z = a z γ v 2 ( 1 u x v c 2 ) 2 + a x u z v c 2 γ v 2 ( 1 u x v c 2 ) 3 a x = a x γ v 3 ( 1 + u x v c 2 ) 3 a y = a y γ v 2 ( 1 + u x v c 2 ) 2

相关

  • 梅第奇家族美第奇家族(意大利语:Medici,/ˈmɛdᵻtʃi/ MED-i-chee;意大利语发音:),或译为麦地奇家族、梅迪奇家族、梅迪契家族、梅第奇家族,是佛罗伦萨15世纪至18世纪中期在欧洲拥有强大势力
  • 爱德华·萨义德爱德华·瓦迪厄·萨义德(阿拉伯语:إدوارد سعيد‎,英语:Edward Wadie Said,1935年11月1日-2003年9月25日),国际著名文学理论家与批评家,后殖民理论的创始人,也是巴勒斯坦建
  • Nichkhun尼奇坤·布克·霍尔韦古尔(英语:Nichkhun Buck Horvejkul,泰语:นิชคุณ หรเวชกุล;1988年6月24日-),艺名Nichkhun(韩语:닉쿤,尼坤),美泰双籍K-POP歌手,出生于美国加利福尼亚州
  • 元建模元模型(或称替代模型)是“模型的模型”, 元建模则指建立元模型的过程(meta-physics 为”形而上学“,即“科学的科学”)。因此,元建模的工作包括:分析、构建和开发一套用于给某类指定
  • 储君储君,君主的法定继承人。根据君主的不同称谓又称皇储、王储或大公储。储君在君主逝世、禅位、逊位后,成为继任君主。是世袭君主制重要的组成部分。在现存的君主制国家中,通常由
  • 地方公共团体编号全国地方公共团体编号(日语:全国地方公共団体コード)是日本地方公共团体(都道府县、市町村、特别区、行政区、一部事务组合等)的5-6位数编码。又名JIS地名编号、地方自治体编号、
  • 对外经济贸易部1999年规定:印章直径5厘米,中央刊国徽,由国务院制发。中华人民共和国对外贸易经济合作部,是中华人民共和国国务院曾经存在的部门,负责对外贸易事务。1982年,由进出口管理委员会、
  • 沈鹏沈鹏(1931年9月-),斋名介居,号介居主,江苏江阴人,中国现代编辑出版专家,书法家、美术评论家及诗人。现任中国书法家协会终身名誉主席。幼习诗、书、画,入大学攻读文学,后转攻新闻。历
  • 伊奥尼亚伊奥尼亚(拉丁语:Ionia;古希腊语:Ἰωνία;土耳其语:İyonya;这三种语言的发音均为“伊奥尼亚”而非“爱奥尼亚”)是古希腊时代对今天土耳其安纳托利亚西南海岸地区的称呼。伊奥尼
  • 蕴 (佛教)蕴(巴利语:khandha;梵语:स्कन्ध,转写:skandha;孟加拉语:স্কন্ধ,转写:skandha),又译为阴或聚,有积增聚合的意思,佛教术语,意指人类存在的基本要素。佛教将蕴分析成五种基本元素,