扩展形式的博弈

✍ dations ◷ 2025-07-19 18:22:48 #扩展形式的博弈

博弈论中,与正则形式相应,扩展形式(英语:Extensive-form game)通过树来描述博弈。每个节点(称作决策节点)表示博弈进行中的每一个可能的状态。博弈从唯一的初始节点开始,通过由参与者决定的路径到达终端节点,此时博弈结束,参与者得到相应的收益。每个非终端节点只属于一个参与者;参与者在该节点选择其可能的行动,每个可能的行动通过边从该节点到达另一个节点。

和正则形式不同,扩展形式允许互动的显式模型(explicit modeling of interactions),互动中,一个参与者可以在博弈中多次行动,并且在不同的状态中可以做出不同的行为。

完整的扩展形式表述包括:

右图是一个双人博弈:1和2。每个非终端节点上的数字表示该节点所属的参与者。终端节点上的数字表示参与者的收益(例如:2,1表示参与者1得到2,参与者2得到1)。图片里每个边上的符号是这个边所代表的行动的名字。

初始节点属于参与者1,表示该参与者先动。博弈顺序如下:参与者1选择或者;参与者2观察到参与者1的选择,然后选择或者,最后得到最终收益。四个终端节点代表四个结果:(U,U'),(U,D'),(D,U')和(D,D')。每个结果得到的收益分别是(0,0),(2,1),(1,2)和(3,1)。

如果参与者1选择,参与者2为了最大化收益,会选择,最后参与者1只能得到1。但是如果参与者1选择,参与者2为了最大化收益,会选择,此时参与者1得到2。所以参与者1会选择,参与者2选择。即是子博弈完美均衡

参与者在一个特定的决策节点上可能有无数种可能的行动可以选择。其表示方法是用弧形来连接从该决策节点延伸出的两条边。如果行动空间是在两个数字之间的闭联集(continuum),那么把这两个表示上下界限的数字分别放在弧的上方和下方,并用一个变量来表示其支付。此时无数个决策节点可以用一个在弧中心的节点所代替。这种表示方式同样可以用在一个有限的行动空间中,只要该行动空间足够大,此时不可能用边来表示每个行动。

左侧的树表示这样一个博弈:该博弈或者有一个无限行动空间(任何0到5000的实数),或者有一个很大的行动空间(可能是任何在0到5000的整数)。如果我们在这里假设它表示两个参与Stackelberg竞争的企业。公司的支付表示在左边,其中q1和q2表示先行者公司以及追随者公司分别采用的策略,c1和c2是常数(表示公司的机会成本)。该博弈的子博弈完美纳什均衡可以通过对支付函数求追随者策略变量(q2)的一阶偏导数表示其利润最大化,并求出其最优反应函数, q 2 ( q 1 ) = ( 5000 q 1 c 2 ) / 2 {\displaystyle q2(q1)=(5000-q1-c2)/2} 。用同样的方法计算先行者的最优反应函数,并假定先行者知道追随者会选择上述的行动,通过一阶偏导数来解出 q 1 = ( 5000 + c 2 2 c 1 ) / 2 {\displaystyle q1*=(5000+c2-2c1)/2} 。在将q1*代入到追随者的最优反应函数中, q 2 = ( 5000 + 2 c 1 3 c 2 ) / 4 {\displaystyle q2*=(5000+2c1-3c2)/4} ,此时(q1*,q2*)就是子博弈完美纳什均衡。如果假设 c1=c2=1000,那幺子博弈完美纳什均衡的解就是(2000,1000)。

树图清楚地表示了参与者1先动,参与者2观察到参与者1的行动。然而,一些博弈并不是这样。参与者并不是一直能观察到另一个人的选择(例如,同时行动或者行动被隐藏)。信息集是决策节点的组合:

完美信息的博弈是指在博弈的任何阶段,每个参与者都清楚博弈之前发生的所有行动,也即每个信息集都是一个单元素集合。没有完美信息的博弈具有不完美信息。

左图中的博弈中,参与者2行动时不知道参与者1的选择,除此之外和第一个博弈相同。第一个博弈具有完美信息;而左图中的没有。如果两个参与者都是理性的,并且都知道对方也是理性人,对方知道的信息,自己也能获得(即参与者1知道参与者2知道参与者1是理性的,参与者2同样也知道,如此循环下去),

博弈论是一种数学理论,所以上述的博弈树结构可以转化为公式表达。

扩展形式的有限树是这样一个结构 Γ = K , H , , { A ( H ) } H H ] , a , ρ , u {\displaystyle \Gamma =\langle {\mathcal {K}},\mathbf {H} ,,\{A(H)\}_{H\in \mathbf {H} }],a,\rho ,u\rangle } 其中:

相关

  • 2#成对的概念<< 0 1 2 3 4 5 6 7 8 9 >>2(二)是1与3之间的自然数,2是唯一的偶数素数 (又称偶素数)。在现代标准汉语中,数词2在不同情况下,常常需要变换用字以适应需要,这一点在其他数词中是不存
  • 新泽西新泽西州(英语:State of New Jersey),简称新州,是美国第四小以及人口密度最高的州,邮政缩写NJ。其命名源自位于英吉利海峡中的泽西岛;其昵称为“花园州”。新泽西州通常被划分在美
  • 血管紧张素转换酶抑制剂血管紧张肽I转化酶抑制剂(英语:ACE inhibitor,简称为ACEI)是一类抗高血压药。血管紧张素转化酶(ACE)是肾素-血管紧张素-醛固酮(RAA)系统中的一个重要环节,该系统对血压的调节有着及其
  • 直立性低血压姿位性低血压(英语:Postural hypotension),又称姿势性低血压、姿态性低血压、直立性低血压或体位性低血压(Orthostatic hypotension,或简称 Orthostasis)。主要指患者在站姿时血压
  • 生产资料生产资料(英语:means of production),或称生产方法、生产手段、生产材料、生产要素。生产资料定义为:劳动者进行生产时所需要使用的资源或工具,包括劳动资料(例如土地、厂房、机器
  • 块茎块茎(英语:stem tuber)及块根(英语:root tuber)均为部分植物物种借助其构造上膨大了的部分而形成的营养素贮藏器官。这些构造存在于多年生植物,用以在其越过冬季或旱季(多年化(英语:Pe
  • 曹国舅曹佾(公元1018年-公元1089年),字公伯,又名景休,北宋真定府灵寿县人,曹彬的孙子,宋仁宗慈圣皇后的弟弟。他性情温和,通晓音律,善于围棋、射箭,喜欢赋诗。开始任右班殿直,官至殿前都虞候,安
  • 小猎犬小猎犬(英语:Beagle),又称猎兔犬、小猎兔犬,也音译为米格鲁、比格犬,是一种小型至中型的犬种。在分类上属于猎犬,它的外观近似猎狐犬,但是体形较小。小猎犬最早用于狩猎,现今在世界各
  • 当特尔卡斯托群岛当特尔卡斯托群岛(英语:D'Entrecasteaux Islands)是巴布亚新几内亚东端的群岛,位于米尔恩湾省,群岛延伸160公里,土地面积约3,100平方公里,与巴布亚新几内亚大陆相隔,群岛有火山活动
  • 日侨日侨(日语:日系人/にっけいじん)指的是已移居海外,并取得当地国籍或永久居留权,具有日本血统的侨民。现在估计大约有350万人(也包括混血)。在日本居住的日侨被称为归国日侨(在日日系