等于

✍ dations ◷ 2025-10-09 16:30:33 #等于
在数学的领域中,若两个数学对象在各个方面都相同,则称他们是相等的。这就定义了一个二元谓词等于,写作“ = {displaystyle =} ”; x = y {displaystyle x=y} 当且仅当 x {displaystyle x} 和 y {displaystyle y} 相等。通常意义上,等于是通过两个元素间的等价关系来构造的。将两个表达式用等于符号连起来,就构成了等式,例如 6 − 2 = 4 {displaystyle 6-2=4} ,即 6 − 2 {displaystyle 6-2} 与 4 {displaystyle 4} 是相等的。注意,有些时候“ A = B {displaystyle A=B} ”并不表示等式。例如, T ( n ) = O ( n 2 ) {displaystyle T(n)=O(n^{2})} 表示在数量级 n 2 {displaystyle n^{2}} 上渐进。因为这里的符号“ = {displaystyle =} ”不满足当且仅当的定义,所以它不等于等于符号;实际上, O ( n 2 ) = T ( n ) {displaystyle O(n^{2})=T(n)} 是没有意义的。请参见大O符号了解这部分内容。集合 A {displaystyle A} 上的等于关系是种二元关系,满足自反性,对称性,反对称性和传递性。 实际上,这是 A {displaystyle A} 上唯一满足所有这些性质的关系。 去掉对反对称性的要求,就是等价关系。 相应的,给定任意等价关系 R {displaystyle R} ,可以构造商集 A / R {displaystyle A/R} ,并且这个等价关系将‘下降为’ A / R {displaystyle A/R} 上的等于。在任何条件下都成立的等式称为恒等式,包含未知数的等式称为方程。谓词逻辑含有标准的关于相等的公理来形式化莱布尼茨律。莱布尼茨律是由哲学家莱布尼茨在17世纪提出来的。 莱布尼茨的想法是,两样物体是同一的,当且仅当它们有完全相同的性质。 形式化这一说法,可以写成然而,在一阶逻辑中,不能对谓词进行量化。因此,需要使用下述公理:这条公理对任意单变量的谓词 P {displaystyle P} 都有效,但只定义了莱布尼茨律的一个方向:若 x {displaystyle x} 和 y {displaystyle y} 相等,则它们具有相同的性质。 可以通过简单的假设来定义莱布尼茨律的另一个方向:则若 x {displaystyle x} 和 y {displaystyle y} 具有相同的性质,则特定的它们关于谓词 P {displaystyle P} 是相同的。这里谓词 P {displaystyle P} 为: P ( z ) {displaystyle P(z)} 当且仅当 x = z {displaystyle x=z} 。 由于 P ( x ) {displaystyle P(x)} 成立, P ( y ) {displaystyle P(y)} 必定也成立(相同的性质),所以 x = y {displaystyle x=y} (' ' P {displaystyle P} 的变量为 y {displaystyle y} ).对任意量 a {displaystyle a} 和 b {displaystyle b} 和任意表达式 F ( x ) {displaystyle F(x)} ,若 a = b {displaystyle a=b} ,则 F ( a ) = F ( b ) {displaystyle F(a)=F(b)} (设等式两边都有意义)。 在一阶逻辑中,不能量化像 F {displaystyle F} 这样的表达式(它可能是个函数谓词)。 一些例子:对任意量 a {displaystyle a} , a = a {displaystyle a=a} 。这个性质通常在数学证明中作为中间步骤。例子:如果 a = b {displaystyle a=b} ,那么 b = a {displaystyle b=a}例子:如果 a = b {displaystyle a=b} , b = c {displaystyle b=c} ,那么 a = c {displaystyle a=c}实数或其他对象上的二元关系“约等于”,即使进行精确定义,也不具有传递性(即使看上去有,但许多小的差能够叠加成非常大)。然而,在绝大多数情况下,等于具有传递性。尽管对称性和传递性通常看上去是基本性质,但它们能够通过替代性和自反性证明得到。“等于”符号或 “ = {displaystyle =} ”被用来表示一些算术运算的结果,是由Robert Recorde在1557年发明的。由于觉得书写文字过于麻烦,Recorde在他的作品 The Whetstone of Witte 中采用了这一符号。原因是符号中的两条线一样长,表明其连接的两个量也相等。这一发明在威尔士的St Mary教堂有记录。约等于的符号是 ≈ {displaystyle approx } 或≒,不等于的符号是 ≠ {displaystyle neq } 。

相关

  • 移植排斥移植排斥(英语:transplant rejection)是器官移植后的器官并不被受移植者身体接受的情况。一般来说这是因为免疫系统将移植器官视为异物,如同攻击病毒或细菌一样攻击移植器官所引
  • 依法利珠单抗依法利珠单抗(Efalizumab,药品商品名为 Raptiva,瑞体肤,默克)是牛皮癣的治疗用药,是一种抗CD11a的单克隆抗体制剂,其作用机制是辨识白血球上的CD11a抗原,使白血球与其他细胞附着的能
  • 领土扩张美利坚殖民地,又称美国海外属地或美国属地,是指美国除了联邦州与华盛顿特区以外的所有地,它们之间与美国的关系各有不同。阿拉斯加与夏威夷最终成为美国联邦的一州。而现在的美
  • 别列赞岛别列赞岛(Berezan Island) 位在第聂伯河到黑海的出海口,行政区域上属于乌克兰尼古拉耶夫州。约900米长,320米宽,与陆地间被浅水分隔,距离约二公里半。别列赞岛被认为可能是黑海
  • 促脂解素促脂解素(英语:Lipotropin,简写为LPH)是一种来源于阿黑皮素原(POMC)的激素。LPH分为β-LPH和γ-LPH。β-LPH为POMC的C端片段,含90个氨基酸残基,在体内可作用于黑色素细胞使之产生黑
  • 甲硫氨酸腺苷转移酶甲硫氨酸腺苷转移酶(英语:Methionine adenosyltransferase)是一种催化甲硫氨酸与ATP合成S-腺苷甲硫氨酸(SAM)的酶。EC 1.1/2/3/4/5/6/7/8/9/10/11/12/13/14/15/16/17/18/19/20/21
  • 琳·马古利斯琳·马古利斯(英语:Lynn Margulis,也译作林恩·马古利斯,姓或译作玛格丽斯,1938年3月15日-2011年11月22日),美国生物学家,马萨诸塞大学阿默斯特分校在地球科学系的大学教授,天文学家卡
  • 硫化铝硫化铝(Aluminium sulfide),化学式为Al2S3,将其投入水中会发生双水解反应生成硫化氢及氢氧化铝:由于硫化铝的双水解反应,最简单的硫化铝制备方法是,将铝粉与硫粉共热:
  • 戈登县戈登县(Gordon County, Georgia)是美国乔治亚州西北部的一个县。面积927平方公里。根据美国2000年人口普查,共有人口44,104人。县治卡尔霍恩 (Calhoun)。成立于1850年2月13日。
  • 普罗旺斯-阿尔卑斯br /-蓝色海岸普罗旺斯-阿尔卑斯-蓝色海岸(法语:Provence-Alpes-Côte d'Azur)是法国东南部的一个大区,南邻地中海。面积31,400平方公里,人口4,506,151人。下辖上普罗旺斯阿尔卑斯省(04)、上阿尔