解析数论

✍ dations ◷ 2025-10-08 19:45:47 #解析数论
解析数论(analytic number theory),为数论中的分支,它使用由数学分析中发展出的方法,作为工具,来解决数论中的问题。它首次出现在数学家狄利克雷在1837年导入狄利克雷L函数,来证明狄利克雷定理。解析数论的成果中,较广为人知的是在质数(例如质数定理及黎曼ζ函数)及堆叠数论(例如哥德巴赫猜想及华林问题)。解析数论主要分为两种,区分方式主要是因为待求解问题种类的不同,而比较不是因为使用技巧上的基本差异。微积分和复变函数论发展以后,产生了解析数论。该学科的第一个主要成就是狄利克雷用解析方法证明了狄利克雷定理。依靠黎曼ζ函数对素数定理的证明是另一个里程碑。 解析数论是解决数论中艰深问题的重要工具,数论中有些问题必须由解析方法才能提出或解决。 中国的华罗庚开启了中国解析数论学派,王元、陈景润、潘承洞等人在“哥德巴赫猜想”上也有相当进展,陆续证明了“3+4”、“2+3”及“1+2”,其中的“1+2”就是陈氏定理。解析数论的定理及成果比较不是有关整数精确结构的的结果,这方面用代数或是几何上的工具比较合适。解析数论的许多定理多半会预估一些数论相关函数的范围及预计。欧几里得证明了质数有无限多个,可是很难找到可以快速判定一个整数是否是质数的方法(特别是整数很大时)。另外一个也有关系,但比较简单的问题是找到质数的渐近分布,也就是可以大略描述有多少质数小于特定整数。卡尔·高斯在计算大量的质数后提出其猜想,他认为小于或等于一个很大整数N的质数个数,接近以下的定积分波恩哈德·黎曼在1859年利用复变分析以及一个特殊的亚纯函数(后来称为黎曼ζ函数)来推导小于等于特定实数x之质数个数的解析解。值得一提的是,黎曼公式的主要项就是上述的积分,因此让高斯的猜想更加重要。黎曼找到了解析解中的误差项和黎曼ζ函数的复数零点有密切的关系,因此质数分布的形式也和黎曼ζ函数的复数零点有关。雅克·阿达马及查尔斯·让·德·拉谷地普桑(英语:Charles Jean de la Vallée-Poussin)利用黎曼的概念,以及对ζ函数零点的资讯,致力证明高斯的猜想,而且他们证明了若则上述的结果目前称为质数定理,是解析数论的核心结果。简单的说,质数定理提到给定一个大数字N,小于等于N的质数个数大约有N/log(N)个。华林问题是堆叠数论中最重要的问题之一,问题是针对任意大于等于2的整数k,是否可以将任意正整数表示为有限个整数的k次方的和针对平方的例子k = 2,已由拉格朗日在1770年由四平方和定理证明。针对任意整数的例子由大卫·希尔伯特在1909年证明,不过运用的是代数的技巧,没有提出数字个数的上界。戈弗雷·哈罗德·哈代及约翰·恩瑟·李特尔伍德应用解析数论的工具处理此一问题,带来突破性的进展,他们用的工具称为圆法(circle method),可以针对函数G(k)(整数用k次方和表示时,需要的最小整数)提出具体的上界,例如维诺格拉多夫上界为丢番图方程和多项式方程的整解有关。有些研究可能是探讨解的分析情形,也就是依照某种“高度函数”来计算这些解。高斯圆问题(英语:Gauss circle problem)是丢番图方程中的一个重要例子,要求满足下式的整数点(x y)用几何的方式来说,给定在平面上,以原点为圆心,半径是 r {displaystyle r} 的圆,此问题要问的是在此圆内和圆上有多少个格子点。其解为 π r 2 + E ( r ) {displaystyle ,pi r^{2}+E(r),} ,其中 E ( r ) / r 2 → 0 {displaystyle ,E(r)/r^{2},to 0,} 在 r → ∞ {displaystyle ,rto infty ,} 时。不过最难(也是解析数论取得大幅进展)的部分是在确认此误差项 E ( r ) {displaystyle E(r)} 的上界。高斯证明了误差项的渐近行为 E ( r ) = O ( r ) {displaystyle E(r)=O(r)} ,O(r)为大O符号,表示误差项不会超过 r {displaystyle r} 的线性项。而后来瓦茨瓦夫·谢尔宾斯基在1906年证明了 E ( r ) = O ( r 2 / 3 ) {displaystyle E(r)=O(r^{2/3})} 。哈代和爱德蒙·兰道都证明了 E ( r ) = O ( r 1 / 2 ) {displaystyle E(r)=O(r^{1/2})} 不成立( E ( r ) {displaystyle E(r)} 数量级超过 r {displaystyle r} 开根号)。因此以后目标是证明针对每一个 ϵ > 0 {displaystyle epsilon >0} ,都存在实数 C ( ϵ ) {displaystyle C(epsilon )} 使得 E ( r ) ≤ C ( ϵ ) r 1 / 2 + ϵ {displaystyle E(r)leq C(epsilon )r^{1/2+epsilon }} 。2000年马丁·赫胥黎(英语:Martin Huxley)证明了 E ( r ) = O ( r 131 / 208 ) {displaystyle E(r)=O(r^{131/208})} ,是目前最好的结果。On specialized aspects the following books have become especially well-known:Certain topics have not yet reached book form in any depth. Some examples are (i) Montgomery's pair correlation conjecture and the work that initiated from it, (ii) the new results of Goldston, Pintz and Yilidrim on small gaps between primes, and (iii) the Green–Tao theorem showing that arbitrarily long arithmetic progressions of primes exist.

相关

  • 风险因子风险因子(Risk Factor),在流行病学中是与疾病或感染风险增加相关的变量。风险因子或决是因数是相关的,由相关不蕴涵因果可知,它们不一定是因果关系。例如,“年轻不能说是引起麻疹
  • 正写法正写法,即是文字符号形体的规范和使用规则,包括正字法和正词法。汉字正字法可依据《通用规范汉字表》、《简化字总表》、修订后的《第一批异体字整理表》、《现代汉语通用字表
  • 水上旅游水上旅游是在假日或闲暇时间通以船作为工具在水上游玩的一种旅游方式,水上旅游有船岸互动、消费链长和特色项目附加值高等特点。在中国水资源比较发达的地区水上旅游比较受欢
  • 笔迹学笔迹学(英语:Graphology)是一种研究和分析笔迹的伪科学,主要是借此分析人的心理。在医疗领域,有时会利用笔迹分析来辅助大脑和神经系统疾病的诊断和跟进。笔迹学常被误会是文件鉴
  • 破伤风梭状芽胞杆菌破伤风梭菌(学名:Clostridium tetani)是一种梭菌属的杆状专性厌氧菌,外观类似网球拍和鸡腿,是破伤风的病原体。医学导航:病菌细菌(分类)gr+f/gr+a(t)/gr-p(c/gr-o药物(J1p、w、n、m、疫苗)
  • 大峡谷国家公园大峡谷国家公园(Grand Canyon National Park)是美国西南部的国家公园,在1979年被列为世界自然遗产,以深达1500米,由科罗拉多河耗费万年所切割出来的科罗拉多大峡谷景观闻名于世。
  • 地理分布世界生物地理分区是指在历史发展过程中形成而在现代生态条件下存在的许多生物类型的总体,是在历史因素和生态因素共同作用下形成的。动植物的种或其他分类类群,最初是从一个地
  • 安芬森克里斯蒂安·伯默尔·安芬森(英语:Christian Boehmer Anfinsen,1916年3月26日-1995年5月14日),出生于美国宾夕法尼亚州莫内森,美国生物化学家,他和斯坦福·摩尔与威廉·霍华德·斯坦
  • 植物呼肠孤病毒属植物呼肠孤病毒属(Phytoreovirus)是呼肠孤病毒科的一属,是目前确定的仅有两种植物病毒的属之一(另一是斐济病毒属),一种名为水稻黑条矮缩的植物病即为此类病毒所引起。其代表种有:
  • 达勒姆达勒姆(英语:Durham,又译德罕)是一座位于美国北卡罗来纳州达勒姆县的城市,也是该县的县治所在地。达勒姆是美国东岸的大学城之一,著名的私立学校杜克大学就位于该市。人口204,845