首页 >
六角状
✍ dations ◷ 2025-09-26 11:15:42 #六角状
在几何学中,六边形是指有六条边和六个顶点的多边形,其内角和为720度。六边形有很多种,其中对称性最高的是正六边形。正六边形是一种可以使用尺规作图的六边形,也可以拼满平面,因此自然界中可以找到许多正六边形的结构,如蜂巢、玄武岩和苯的分子结构。另外,正六边形也可以构成一些高对称性的多面体,如截角二十面体,巴克明斯特富勒烯的分子结构就是这种形状。六边形依照其类角的性质可以分成凸六边形和非凸六边形,其中凸六边形代表所有内角的角度皆小于180度。非凸六边形可以在近一步分成凹六边形和星形六边形,其中星形六边形表示边自我相交的六边形。正六边形是每条边等长、每个角相等的六边形,在施莱夫利符号中可以用
{
6
}
{displaystyle left{6right}}
来表示。正六边形亦可以将正三角形透过截角变换来构造,即切去正三角形的三个顶点,因此正六边形在施莱夫利符号中亦可以写为
t
{
3
}
{displaystyle tleft{3right}}
。但若截角深度太深或太浅都会产生一种具有两个不同边长的六边形。正六边形是一个同时具有边可递和点可递特性的六边形,是一种双心多边形,这意味着它同时具有内切圆和外接圆。正六边形边的长度与其外接圆半径相等,且等于边心距的
2
3
3
{displaystyle {frac {2{sqrt {3}}}{3}}}
倍,其中,边心距与内切圆半径相等。正六边形的每个内角都是120度,且具有6次的旋转对称性(阶数为6的旋转对称性)和6轴对称性(有6个对称轴的轴对称性),组成了D6二面体群的对称性。正六边形最长的对角线是两侧顶点的对角线,其长度恰好为边长的两倍,因此若有一个三角形其中一个顶点位于六边形几何中心、其中一条边与六边形共用,则这个三角形是正三角形,且正六边形可以分割成6个此三角形。正六边形是其中一种能够密铺平面的正多边形,其余两种为正三角形和正方形。如同正方形和正三角形一样,正六边形可以经过重复的排列和组合,形成没有空隙或重叠的几何图形,这种图行每个顶点都是3个六边形的公共顶点,并形成一个很紧密的二维空间充填,也因此大部分的蜂窝都会将其的每个蜂房做成六边形,使其能够有效地利用空间和建材。另外,正三角形镶嵌的沃罗诺伊图是正六边形镶嵌。虽然具有等边的特性,但并不常被当作等边多边形(英语:Equilateral polygon)。正六边形的最大直径
D
{displaystyle D}
是最大半径或外接圆半径
R
{displaystyle R}
的两倍,其外接圆半径
R
{displaystyle R}
与边长
t
{displaystyle t}
等长。正六边形的面积为:也可以利用其边心距套用任意正多边形公式求得:正六边形可以单单用圆规直尺绘画。因为当正六边形内接于圆时,圆的半径刚好等于正六边形的边长,正六边形最长的对角线就等于圆的直径。中国古代对圆周和直径的关系有“周三径一”之说,可以视为采用正六边形为圆的近似图形求得的结果。下面是正六边形的尺规作图,共三步。因为正六边形由六个等边三角形组成,所以:正六边形的面积=三角形面积×6=
3
4
×
a
2
×
6
=
3
2
a
2
3
{displaystyle {frac {sqrt {3}}{4}}times a^{2}times 6={frac {3}{2}}a^{2}{sqrt {3}}}这些等边三角形的高是正六边形内切圆的半径,即
3
2
a
{displaystyle {frac {sqrt {3}}{2}}a}
。有多种六边形可以独立密铺平面,换句话说即该六边形反复拼接可以无空隙地填满整个平面扭歪六边形,又称不共面六边形,是指顶点并非完全共面的六边形一些正扭歪六边形来自于高为多胞体的皮特里多边形。部分多面体具有六边形的截面,例如立方体、正八面体和正十二面体。在立方体中,六边形的截面穿过对边的中点。由于正六边形具有高度对称性,且可以无空隙地填满整个平面,这种形状称为正六边形镶嵌,其顶点排布(英语:vertex arrangement)称为六边形网格(英语:Hexagonal Grid)。以这些顶点为几何中心的圆形可以构成二维空间中可能的圆形镶嵌中最紧密的一种排布,其牛顿数(英语:Kissing number)为6,也因此自然界经常出现许多正六边形的结构,例如蜂巢、玄武岩和一些化学物质的分子结构。石墨的分子结构蜂巢龟壳由旅行者1号发现、2006年被惠更斯号确认的土星北极的六边形风暴苯的分子结构玄武岩一些六方晶系矿物的结晶六角的雪花由于法国的领土像一个六边形,因此法国人也经常用“六边形”(L'Hexagone)。1988年发行的戴高乐1法郎硬币(法语:Pièce de 1 franc de Gaulle)上,就印有代表法国的六边形。
相关
- EICD-10 第四章:内分泌、营养和代谢疾病,为WHO规定的已发现的各类内分泌,营养和代谢疾病。甲状腺疾患 (E00-E07)糖尿病 (E10-E14)其他葡萄糖调节和胰腺内分泌的疾患 (E15-E16)其他内分
- 抗药性耐药性(drug resistance)是指药物的治疗疾病或改善病人征状的效力降低。当投入药物浓度不足,不能杀死或抑制病原时,残留的细菌可能具有抵抗此种药物的能力。例如细菌可能因抗生
- 焦油焦油旧称溚(英语:tar),是一种黑色的粘稠液体,是有机物经过加热干馏的产物,常见的为用煤炼焦产生的煤焦油,但木材干馏也会产生木焦油,此外泥炭干馏,石油分馏产生的重油也被称为焦油。
- 乌当区乌当区是中华人民共和国贵州省贵阳市东北部的一个市辖区。东经106°30'-107°03',北纬26°55'-26°33'。乌当区下辖6个镇、2个民族乡、5个社区服务中心:东风镇、水田镇、羊昌
- 塔木德《塔木德》(希伯来文:תלמוד,Talmud,为教导或学习之意)是犹太教中认为地位仅次于《塔纳赫》的宗教文献。源于公元前2世纪至公元5世纪间,记录了犹太教的律法、条例和传统。其
- 管控功能异常心理学 行为遗传学 生物心理学 心理药物学 认知心理学 比较心理学 跨文化心理学 文化心理学 差异心理学(英语:Differential psychology) 发展心理学 演化心理学 实验心理学
- O2OO2O(Online To Offline线上到线下)是一种新的电子商务模式,指线上营销及线上购买带动线下(非网络上的)经营和线下消费。O2O通过促销、打折、提供信息、服务预订等方式,把线下商店
- 贝伐单抗安维汀(学名:Bevacizumab;商品名:Avastin)又称为癌思停,是世界上第一个用于抗肿瘤血管生成的人类化单克隆抗体,可用于治疗结肠癌等多种实体肿瘤,临床上已证实其安全性。安维汀已在一
- 铁硫世界理论铁硫世界学说(英语:Iron–sulfur world theory),是由在慕尼黑的有化学学位的专利律师根特·维奇特萧瑟(德语:Günter Wächtershäuser)从1988年到1992年期间发表一系列文章提出的
- Addison-Wesley艾迪生维斯理(英语:Addison-Wesley),位于美国马塞诸塞州波士顿的图书出版商,以其出版的计算机科学领域教科书而广为人知。除了图书,Addison-Wesley还通过Safari Books Online发行