挠率

✍ dations ◷ 2025-10-08 19:04:05 #挠率
在初等三维曲线的微分几何中,一条曲线的挠率(torsion,或译挠率)度量了其扭曲的程度,即偏离平面曲线的程度。空间曲线的曲率和挠率在一起,与平面曲线的曲率类似。例如,他们都是弗勒内标架的微分方程组中的系数,由弗勒内-塞雷公式给出。设 C 是一条用弧长参数 s {displaystyle s} 给出的空间曲线,单位切矢量为 t {displaystyle {boldsymbol {t}}} 。如果在某一点 C 的曲率 κ {displaystyle kappa } 不等于 0,那么主法矢量和次法矢量分别是n = t ′ κ , b = t × n . {displaystyle mathbf {n} ={frac {mathbf {t} '}{kappa }},quad mathbf {b} =mathbf {t} times mathbf {n} .}其中撇号代表对参数 s {displaystyle s} 的导数。空间曲线在一点处的切矢量 t {displaystyle {boldsymbol {t}}} 和主法矢量 n {displaystyle {boldsymbol {n}}} 所张成的平面就是密切平面,密切平面的法矢量 b = t × n {displaystyle {boldsymbol {b}}={boldsymbol {t}}times {boldsymbol {n}}} 是曲线的次法矢量。如果曲线本身位于一个平面内,那么这个平面就是曲线的密切平面,相应的次法矢量就是常矢量。如果曲线不是平面曲线,则 b {displaystyle {boldsymbol {b}}} 不是常矢量。因为 b {displaystyle {boldsymbol {b}}} 是单位矢量,所以 b ′ {displaystyle {boldsymbol {b}}'} 垂直于 b {displaystyle {boldsymbol {b}}} 。又因为 b = t × n {displaystyle {boldsymbol {b}}={boldsymbol {t}}times {boldsymbol {n}}} ,所以 b ′ = t ′ × n + t × n ′ = t × n ′ {displaystyle {boldsymbol {b}}'={boldsymbol {t}}'times {boldsymbol {n}}+{boldsymbol {t}}times {boldsymbol {n}}'={boldsymbol {t}}times {boldsymbol {n}}'} ,故 b ′ {displaystyle {boldsymbol {b}}'} 也垂直于 t {displaystyle {boldsymbol {t}}} 。所以 b ′ {displaystyle {boldsymbol {b}}'} 与 n {displaystyle {boldsymbol {n}}} 共线。挠率 τ {displaystyle tau } 度量了次法矢量在那一点旋转的速度。由方程得出注:次法矢量的导数垂直于次法矢量和切矢量,从而和主法矢量成比例。式中的负号仅仅是出于习惯,是这个学科历史发展的副产品。挠率半径,通常记为 σ,定义为:几何解释:挠率 τ ( s ) {displaystyle tau (s)} 度量了次法矢量的方向的改变。挠率越大,次法矢量关于切矢量所在的轴的转动越快。设 r = r(t) 是空间曲线的参数方程。假设参数是正则的且曲线的曲率处处非 0。精确地说就是,r(t)关于t三次可微,且矢量 r ′ ( t ) , r ″ ( t ) {displaystyle mathbf {r'} (t),mathbf {r''} (t)} 线性无关。那么挠率可以由下面的公式表达出来:这里撇号表示对 t 求导数,× 号为矢量的叉积。对 r = (x, y, z),上述公式的分量形式为例子:圆螺旋线 r ( t ) = ( a cos ⁡ t , a sin ⁡ t , b t )   ( a > 0 ) {displaystyle {boldsymbol {r}}(t)=(acos {t},asin {t},bt) (a>0)} 的曲率、挠率都是常数,分别为κ = a a 2 + b 2 , τ = b a 2 + b 2 {displaystyle kappa ={frac {a}{a^{2}+b^{2}}},quad tau ={frac {b}{a^{2}+b^{2}}}}Andrew Pressley, Elementary Differential Geometry, Springer Undergraduate Mathematics Series, Springer-Verlag,2001 ISBN 1-85233-152-6

相关

  • 老化人体解剖学 - 人体生理学 组织学 - 胚胎学 人体寄生虫学 - 免疫学 病理学 - 病理生理学 细胞学 - 营养学 流行病学 - 药理学 - 毒理学在生物学及医学上,老化是生理状态随时
  • 电脑断层计算机断层成像(Computed Tomography,简称CT),是一种影像诊断学的检查。这一技术曾被称为计算机轴向断层成像(Computed Axial Tomography)。X射线计算机断层成像(X-Ray Computed To
  • 福井大学福井大学(ふくいだいがく、Fukui University)位于福井县的日本国立大学,简称为福大。
  • 2012年国会选举40.91%(第二轮)▼ 1.4% (第二轮)▼ 8.4%(第二轮)2012年法国立法选举于2012年6月10日与17日举行,是法兰西第五共和国的第14届法国国民议会选举。而之前一个月的5月6日刚刚举行
  • 鍼术针灸是针法和灸法的合体。中医学中采用针刺或火灸人体穴位来治疗疾病,是联合国教科文组织认定的人类非物质文化遗产代表作。根据中医学理论,通过刺激穴位可以改善经络中的气的
  • Desiderius Erasmus德西德里乌斯·伊拉斯谟·鹿特丹姆斯(德语:Desiderius Erasmus Roterodamus;1466年10月27日-1536年7月12日),也译作伊拉斯姆斯、埃拉斯默斯、艾拉思姆斯、伊拉斯默斯,史学界通称鹿
  • 去氧血红蛋白血红蛋白,又称血红素,俗称血色素,(Hemoglobin(美国) 或 haemoglobin(英国) (/ˈhiːməˌɡloʊbᵻn, ˈhɛ-, -moʊ-/);缩写︰Hb 或 Hgb)是高等生物体内负责运载氧的一种蛋白质。可
  • 全球绿党全球绿党(英语:Global Greens)是一个环境保护主义国际政党组织,始建于2001年,并在澳大利亚堪培拉成立: 72个国家的绿党代表在堪培拉通过了全球绿色宪章。全世界百余国皆有绿党的
  • 乐天乐天株式会社(英语:Rakuten, Inc.,日语:楽天株式会社),是三木谷浩史于1997年2月7日创办的一家经营互联网服务的公司。旗下企业包括:日本电商平台“乐天市场”、门户网站“Infoseek
  • 北山清太郎北山清太郎(日语:北山 清太郎/きたやま せいたろう Kitayama Seitarō、1888年3月3日-1945年2月13日)是一位日本动画师、水彩画家、杂志编辑(日语:編集者)。北山曾担任日本水彩画会