首页 >
代数几何
✍ dations ◷ 2025-07-21 18:15:31 #代数几何
代数几何(英语:algebraic geometry)是数学的一个分支,经典代数几何研究多项式方程的零点。现代代数几何将抽象代数,尤其是交换代数,同几何学的语言和问题结合起来。代数几何的基本研究对象为代数簇。代数簇是由空间坐标的若干代数方程的零点集。常见的例子有平面代数曲线,比如直线、圆、椭圆、抛物线、双曲线、三次曲线(非奇异情形称作椭圆曲线)、四次曲线(如双纽线,以及卵形线)、以及一般n次曲线。代数几何的基本问题涉及对代数簇的分类,比如考虑在双有理等价意义下的分类,即双有理几何,以及模空间问题,等等。代数几何在现代数学占中心地位,与多复变函数论、微分几何、拓扑学和数论等不同领域均有交叉。始于对代数方程组的研究,代数几何延续解方程未竟之事;与其求出方程实在的解,代数几何尝试理解方程组的解的几何性质。代数几何的概念和技巧都催生了某些最深奥的数学的分支。进入20世纪,代数几何的研究又衍生出几个分支:20世纪以来,代数几何主流的许多进展都在抽象代数的框架内进行,越发强调代数簇“内蕴的”性质,即那些不取决于代数簇在射影空间的具体嵌入方式的性质,与拓扑学、微分几何及复几何等学科的发展相应。抽象代数几何的一大关键成就是格罗滕迪克的概形论;概形论允许人们应用层论研究代数簇,某种意义上与应用层论研究微分流形与解析流形是否相似。概形论延伸了点的概念。在经典代数几何中,根据希尔伯特零点定理,一个仿射代数簇的一点对应于坐标环上的一个极大理想,仿射概形上的子簇则对应于坐标环的素理想。而在概型论中,概型的点集包含了经典情况代数簇的点集,以及所有子簇的信息。这种方法使得经典代数几何(主要涉及闭点)同时联系起了微分几何、数论等主流分支的问题研究。在古典代数几何中,主要的研究对象是一组多项式的公共零点集,即同时满足一个或多个多项式方程的所有点组成的集合。 例如,在三维欧几里德空间
R
3
{displaystyle mathbb {R} ^{3}}
中的单位球面被定义为满足方程的所有点
(
x
,
y
,
z
)
{displaystyle (x,y,z)}
的集合。一个 "倾斜的" 圆周在三维欧几里德空间
R
3
{displaystyle mathbb {R} ^{3}}
中可以被定义为同时满足如下两个方程的所有点
(
x
,
y
,
z
)
{displaystyle (x,y,z)}
的集合。现在我们开始进入稍微抽象的领域。考虑一个数域
k
{displaystyle k}
,在古典代数几何中这个域通常是复数域
C
{displaystyle mathbf {C} }
,现在我们把它推广为一个代数封闭的数域。我们定义数域
k
{displaystyle k}
上的
n
{displaystyle n}
维仿射空间
A
k
n
{displaystyle {mathbb {A} }_{k}^{n}}
,简单讲来,它只是一些点的集合,以下为方便我们简记为
A
n
{displaystyle {mathbb {A} }^{n}}
。如果函数可以被写为多项式,即如果有多项式
p
{displaystyle p}
在对
A
n
{displaystyle {mathbb {A} }^{n}}
上的每个点都有n
{displaystyle n}
维仿射空间的正则函数正是数域
k
{displaystyle k}
上
n
{displaystyle n}
个变量的多项式。我们将
A
n
{displaystyle {mathbb {A} }^{n}}
上的正则函数记为
k
[
A
n
]
{displaystyle k}
。拓扑场论是数学物理中对sigma 模型(sigma model)的场做路径积分量子化的理论。sigma 模型是从一个实二维曲面到一个固定空间的映射,再加上此二维曲面上一些丛的平滑截面。其中映射部分被称为玻色场(boson field),截面部分被称为费米场(fermi field)。该理论的主要目的是通过路径积分计算配分函数 (partition function)。在一些特殊情况下,可以用局部化方法把配分函数原在无限维空间的积分化简为在有限维空间的积分。对不同的作用量(action)而言,这个过程给出了代数几何的几种计数理论,包括:IIB型弦论则利用了 Hodge 结构的形变来计算。经典教科书,先于概形:不使用概形的语言的现代教科书:关于概形的教科书和参考书:互联网上的资料:
相关
- 放射药物放射药理学是关于研究和制备放射性药物的一门学科。在疾病的诊断与治疗当中,核医学领域将放射性药物作为示踪剂来使用。其中,许多放射性药物采用的都是锝(Tc-99m)。在Klaus Schw
- 哥本哈根哥本哈根(丹麦语:København, 发音 帮助·信息)是丹麦的首都、最大城市及最大港口。座落于丹麦西兰岛东部,与瑞典的马尔默隔松德海峡相望。厄勒海峡大桥在2000年完工后,哥本哈根
- 回避型人格障碍回避性人格障碍(英语: Avoidant Personality Disorder; 简称AvPD或APD),或译畏避型人格障碍、逃避型人格障碍、畏惧型人格违常,属于人格障碍的一种。因为害怕在别人面前丢脸,此类
- 神经纤维轴突(Axon)由神经元组成,即神经细胞之细胞体长出突起,功能为传递细胞本体之动作电位至突触。于神经系统中,轴突为主要神经信号传递渠道。大量轴突牵连一起,以其外型类似而称为神经
- 黏粒黏质粒(Cosmid,又译黏粒)是一种以λ噬菌体(Lambda phage)中的cos sequences所建构而成的质粒,是常用的克隆载体(cloning vector)之一,可用于建构基因组库。最高可置入44000个碱基对,高
- 文观部式文化观光部2000年式,亦称国语罗马字表记法(朝鲜语:국어의 로마자 표기법/國語의 로마字表記法 Gug-eoui lomaja pygogibeob)为现在韩国所使用的韩国语(谚文)拉丁文字转写规则。200
- 阿尔萨斯人阿尔萨斯语(Elsässerditsch,意为“阿尔萨斯德语”),一种通行于法国阿尔萨斯地区的日耳曼语系方言,属于低地阿勒曼尼语,与德语密切相关,使用者人数超过70万。
- 聚腺苷酸化多腺苷酸化(英语:Polyadenylation)是指多聚腺苷酸与信使RNA(mRNA)分子的共价链接。在蛋白质生物合成的过程中,这是产生准备作翻译的成熟mRNA的方式的一部分。在真核生物中,多聚腺苷
- 彗星型客机德·哈维兰“彗星”(De Havilland Comet,D.H 106)是由英国哈维兰公司研发的喷气式客机。亦是全球首款以喷射引擎为动力的民用飞机,外表以0.5毫米的铝制蒙皮包覆,且可飞行至10000
- 环境设计环境设计(英语:environmental design)是在设计计划、程序、政策、建筑物或产品时解决周围环境因素的过程。其目的是创造可以改善特定地区自然、社会、文化和物理环境的空间。古